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Statistics and Model Construction

Introduction

Constructing and evaluating behavioral science models is a
complex process. Decisions must be made about which variables to
include, which variables are related to each other, the functional
forms of the relationships, and so on. The last 10 years have seen a
substantial extension of the range of statistical tools available for
use in the construction process. The progress in tool development has
been accompanied by the publication of handbooks that introduce the
methods in general terms (Arminger, Clogg, & Sobel, 1995; Tinsley &
Brown, 2000a). Each chapter in these handbooks cites a wide range of
books and articles on specific analysis topics.

Recent developments are too broad to cover in detail in a single
chapter. Instead, this chapter examines current statistical modeling
practices from a particular perspective: How can available statistical
tools be translated into practices that improve the quality of
behavioral science models?

Framing the Problem

For the purposes of this chapter, a high quality model is defined
as a model that is grounded in reliable knowledge. Reliable knowledge
is produced when a scientific community reaches a consensus
interpretation (Ziman, 1978), developed through a process of
principled argument (Abelson, 1995). The acronym “MAGIC” summarizes
critical elements of this process. M, magnitude, is “.. the
quantitative support for the qualitative claim" made by a thecry. A,
articulation, is “.. the degree of comprehensible detail in which
conclusions are phrased." @, generality, is “.. the breadth of
applicability of the conclusions."” I, interestingness, is hard to
define, but Abelson (1995) suggests “.. to be theoretically interesting
it must have the potential, through empirical analysis, to change what
people believe about an important issue" (italics in the original).

C, credibility, is the believability of a research claim. Credibility
depends on methodological soundness and the theoretical coherence of
the claim.

Statistical methods contribute to reliable knowledge when they
promote principled argument. This chapter examines trends in data
analysis methods from that perspective. First, the chapter will
consider construction of measurement and substantive models. These
models are considered separately because different methods (e.qg.,
factor analysis vs. regression) traditionally have been used for the
two purposes. The second section of the chapter covers methods of
model appraisal and amendment. This section begins with a brief review
of debates related to significance testing and then considers methods
of augmenting this practice by using effect sizes (ESs), confidence
intervals (CTs), and goodness-of-fit indices (GFIs). Issues related to
defining and choosing between alternative models (e.g., confirmation
bias) are also discussed. Finally, the chapter examines qualitative
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analysis and exploratory data analysis as methods that can be applied
Lo extend existing models.

Overview of Model Construction Methods

The following examination of available model construction methods
is organized around three themes. The first theme is a distinction
between measurement models and path models. This element of the
discussion emphasizes the fact that most data analysis problems can be
assigned to one of two broad categories. Some problems involwve
construct measurement. Other problems involve determining the
relationships between different constructs. Methods in the first
category produce measurement models . Methods in the second category
produce substantive models. Substantive models describe causal paths
linking different constructs. For this reason, these models are
sometimes referred to as path models. Table 1 illustrates these
Categories with reference to specific methods covered in this
discussion.

The intended endpoint of most behavioral research is a causal
model. A progression from measurement models to explanatory models is
natural in this context. For example, early research on Gulf War
syndrome and posttraumatic stress disorder included substantial
efforts to demonstrate that these syndromes existed. Initial efforts
developed measurement models to represent each syndrome. This problem
had to be solved before moving on to the development of path models.
Path models were then constructed to identify causes and effects of
these illnesses. This development pattern is a normal sequence that
Supports consideration of measurement and path models as separate but
related topics.

The second underlying theme of this discussion focuses on the
nature of the constructs under study. Meehl (1990b) captures a
fundamental dichotomy by characterizing variables as *differences in
degree” or “differences in kind.” Constructs that involve differences
in degree (e.g., temperature) can take on any value between the high
and low anchor points of the metric scale. Many personality variables
(e.g., neuroticism) and organizational climate measures (e.g., group
cohesion) involve differences in degree. 1In contrast, constructs that
involve differences in kind classify entities into qualitatively
distinct groups. Gender and psychiatric classifications are common
examples of this type of construct. Scales that measure differences
in degree are referred to as continuous measures; scales that measure
differences in kind are referred to as discrete or categorical
measures. Different analysis models are appropriate for each class of
variable.
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Table 1. Model Construction Methods
Measurement Models

Dimensional Models
Exploratory
Exploratory factor analysis (EFA)
Multidimensional scaling (MDS)
Confirmatory
Confirmatory factor analysis (CFa)

Categorical Models
Exploratory
Exploratory cluster analysis (ECA)
Latent class analysis (LCa)
Confirmatory
Expectation-Maximization Mixture Analysis
Taxometrics

Path Models

Dimensional Models
Exploratory
Regression, including multiple regression
Analysis of variance (ANOVA)
Hierarchical Linear Models (HLM)*
Confirmatory
Structural equation modeling*

Categorical Models
Exploratory
Categorical and limited dependent variables (CLDV) * *
Confirmatory
Taxometrics
Latent class analysis (LCA)

*Includes latent growth curve analysis (LGCA) as a special case.
**Includes logistic regression, logit analysis, probit analysis,
loglinear analysis, and other specific models as special cases.

Finally, the discussion of analytic methods will draw a
distinction between exploratory and confirmatory analyses. This theme
focuses on the constraints imposed on a model . Pure exploratory
analysis imposes the minimum number of constraints required to perform
an analysis. Pure confirmatory analysis completely constrains the
model by specifying the theoretical constructs that are involved,
linking each observed variable explicitly to one or more constructs,
and specifying the parameter values for the functions that convert the
Observed values into estimates of the theoretical constructs. Factor
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loadings and regression coefficients are familiar examples of the
paraneters specified within confirmatory models. The pure forms of
exploratory and confirmatory analysis can be regarded as endpoints of
a continuum. The typical analysis imposes weak constraints. For
example, the number of factors in a factor analysis may be fixed
without constraining which items define what factors, or how large the
individual factor loadings will be. The exploratory/confirmatory
dichotomy is a reminder of the endpoints on the continuum. Movement
from the exploratory extreme toward the confirmatory extreme defines
progress within a research domain.

Model Construction

Model construction has theory validation as its ultimate
objective. This view provides a framework for covering the full range
of issues associated with model construction. Theories involve claims
about causal patterns. These claims are not required when the goal is
simply to predict an outcome. Prediction only requires a statistical
association between a criterion and one or more predictors;
associations do not necessarily have to indicate causal relationships.
A predictive model can be evaluated simply by determining whether it
is accurate when it isg applied to new samples from the original
population (i.e., cross-validation) or to samples from different
populations (i.e., generalizability) .

Theory validation imposes additional criteria. The associations
among variables must be both consistent with the theory being tested
and inconsistent with competing theories. Also, causal inferences
must be justified.

Measurement models are required for testing theories. From this
perspective, the measurement problem is to determine whether a
coherent measure is formed by the observed patterns of association
among hypothesized indicators of a construct. It is necessary to
demonstrate that this basic assumption is justified before testing any
hypothesis about the relationship between the measured construct and
other constructs. For example, the antecedents and consequences of
depression cannot be studied until depression itself can be measured.

Given a measurement scale, researchers can begin to investigate
the pattern of associations between the measured construct and
measures of other relevant constructs. The empirical pattern of
associations determines scale validity (American Psychological
Association [APA], 1985) even as it tests theoretical predictions
concerning the pattern of associations among constructs. In this case,
the predicted pattern of associations defines a substantive model.
When several theories address the same topic, several substantive
models have to be compared with the observed pattern of associations.
The comparison provides the basis for identifying the most reasonable
models in light of the available empirical evidence.
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The full process of model construction requires the development
of both measurement and substantive models. The methods used to
construct measurement and substantive models are somewhat different.
Some methods, such as multiple regression and factor analysis, are
familiar to most researchers. Other methods, such as taxometrics and
categorical and limited dependent variable (CLDV) analyses, are less
familiar. It is critical that researchers understand the range of
options that are available to them. This understanding will permit
the investigator to mold the analysis to his or her research concerns.
As a general principle, research issues should drive the researcher’s
choice of analysis methods, rather than vice versa. (For additional
discussion of problem-driven vs. methods-driven research, see Ness &
Tepe, this volume.)

Measurement Models
Differences in Degree

Most Dbehavioral constructs are conceived of as differences in
degree, and their measurement scales are typically developed using
exploratory factor analysis (EFA) and confirmatory factor analysis
(CFA) . Gorsuch’s (1983) readable introduction provides guidance on
all of the important elements of EFA. Fabrigar, Wegener, MacCallum,
and Strahan (1999) also provide a summary of current EFA practices and
recommendations for improving those practices.

A trend toward the use of CFA instead of EFA is one sign of
movement toward stronger methods in behavioral research. The
increasingly frequent use of CFA has been accompanied by publication
of a number of texts that provide general introductions to the method.
However, introductory texts often omit important topics (Steiger,
2001). Bollen’s (1989) text remains a recommended choice for an
introduction to these methods. Boomsma (2000) and McDonald and Ho
(2002) provide similar recommendations with respect to CFA.

The decision to employ EFA or CFA is influenced by the prior
research that is available to guide model development. As suggested
by its name, EFA is the most appropriate analysis option when little
is known about the structure of a domain. For example, a
guestionnaire constructed to measure leadership might consist of a
large number of questions. Investigators could reasonably ask whether
various types of behavior described by the questionnaire items
effectively combine to define a single overall leadership style.
Alternative models would divide the items into subsets that define two
Or more distinct leadership styles. EFA can be used to compare the
unidimensional and multidimensional model alternatives.

Exploratory Factor Analysis (EFA) in Practice. Fabrigar et al.
(1999) have summarized current EFA practices from the perspective of
three basic decision points in a factor analysis. First, a method of
factoring must be chosen. Second, the number of factors to extract
must be determined. Third, a criterion for rotating the factors to a
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final solution must be chosen. The analyst has a number of options at
each decision point. The most cowmmon choices are principle components
analysis (PCA) with Kaiser'’s (1960) criterion to select the number of
factors, followed by an orthogonal varimax rotation (Fabrigar et al.,
1999). Computer programs probably contribute significantly to this
apparent preference. In many statistical packages, this analysis
results when an investigator simply provides a set of variables for
analysis and accepts the default values for each program option.
Investigators therefore may “choose” PCA without realizing they have
made a choice.

The decision regarding how many factors to extract is important
for theory formulation and Lesting. This decision defines the number
of theoretical constructs to be represented in the neasurement model.
Obviously, this decision is critically important in modeling. Thug,
it is noteworthy that Kaiser’s (1960) criterion (i.e., A > 1.00) often
extracts too many factors. The magnitude of this problem increases
when more variables are analyzed and/or when the sample size is small
(Buja & Eyuboglu, 1992; Cota, Longman, Holden, Fekken, & Xinaris,
1993; Lautenschlager, 1989). Parallel analysis (Horn, 1965; Humphreys
& Montanelli, 1975) or Velicer's (1976) minimum average partial
procedure provide better guidance. These procedures have not been
used much in the past because they have been difficult to implement .
Recently published computer routines can solve thigs problem (Kaufman &
Dunlap, 2000; O'Connor, 2000). Guidelines based on Monte Carlo
studies can also be used to reduce the risk of extracting too many
factors (Buja & Eyuboglu, 1992; Cota et al., 1993; Lautenschlager,
1989). The newer methods promote parsimony by reducing the risk of
constructing models that include phantom theoretical constructs that
are defined by chance patterns of covariation within a particular
database.

Extracting too many factors may not be a major problem for EFA.
Overextraction has little effect on the structure of true factors
(Wood, Tataryn, & Gorsuch, 1996). The greater problem lies in wasted
effort devoted to speculating about the meaning of what are
essentially chance findings. Because subjectively plausible
interpretations can be devised for factor analyses of random data
(Armstrong & Soelberg, 1968), interpretability is not a good guide for
factor retention. Decisions based on sample size and number of
indicators are also of limited value in avoiding overextraction
(MacCallum, Widaman, Shang, & Hong, 1999). Factor structure is more
strongly determined by the quality of the indicator variables. When
EFA is truly exploratory, it may be difficult to ensure that selected
indicator variables meet this criterion.

Fabrigar et al. (1999) concluded their review of the state of the
art with a set of recommendations that would improve on the typical
current practice. DPrincipal factors analysis should replace PCA.
Obligue rotation (i.e., correlated factors) should replace orthogonal
rotation. Parallel analysis or a direct measure of fit between the
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factor model and the fit of the model to the data (e.g., root mean
square error of approximation [RMSEA]) should replace Kaiser’s
criterion. Applying these methods to reanalyze data from three
studies, Fabrigar et al. (1999, p. 291) concluded that “.. an EFA with
an oblique rotation provides much better simple structure, more
interpretable results, and more theoretically plausible
representations of the data than a PCA with an orthogonal rotation.”

In the long run, getting the number of factors right in EFA is
important, but not essential. Factors that are the product of chance
associations will not reproduce in other samples. When somewhat
similar chance factors are found in different studies, these factors
will either have no relationship to other variables or will show
different patterns of association across studies. Either outcome
should discourage investigators from taking those factors seriously
when constructing theoretical statements. Extraneous factors will
thus be weeded out in cumulative research programs. Nevertheless, the
research process is made more efficient when supported by
intelligently focused analyses. The scientific progress is slowed by
researchers who adopt the complacent view that the evidence will “sort
itself out” in the long run.

Multidimensional Scaling (MDS). MDS is another method of
establishing the dimensionality of a measurement space. This method
can be applied to the same correlation matrices used in EFA. However,
the interpretation of the elements of the matrix is different. 1In
EFA, correlations indicate shared causal influences. Viewing EFA as a
path model, the correlations between indicator variables can be
estimated by multiplying the factor loadings (i.e., the path
coefficients; cf. Kenny, 1979). Factor analysis procedures produce
loadings that reproduce the observed correlations as well as possible
within specific constraints.

MDS focuses on representing similarity between cases rather than
common causal influences. MDS solutions define locations within a
reference space. Cases that have similar attributes are close
together; cases that are dissimilar are farther apart. This distance
perspective can be implemented using a number of alternative methods
Lo scale distance. No matter which distance measure is chosen, the
analysis focuses on differences between the dimensional values rather
than on the product of dimensional values (Davison, 1985; Davison &
Sireci, 2000). The basis for setting the number of dimensions is the
variance (in the observed distances) that is explained by adding
another dimension to the model. The model is complete when the
addition of another dimension would not substantially increase the
variance explained. Compared with EFA, MDS typically requires fewer
dimensions to describe relationships among entities (Davison, 1985).

Confirmatory Factor Analysis (CFA). EFA can be carried out with
little or no knowledge of the likely structure of the data to be
analyzed. Advance specification of the number of dimensions is
optional in EFA. EFA computes loadings for all items on all
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dimensions. 1In EFA, all dimensions are either orthogonal
(uncorrelated) or obligue (correlated).

CFA places a greater burden on the investigator. The number and
nature of dimensions in the model must be specified in advance. CFA
requires at least an informed guess to support each of the three basic
factor analysis decisions. The investigator must specify the number
of latent traits to measure, designate which indicator variables
define each latent trait, and specify a pattern of correlations
between latent traits. The pattern can include a mixture of
orthogonal and oblique dimensions. The model can be specified in
greater detail by assigning specific values to factor loadings and
factor correlations (cf., for example, Arbuckle & Wothke, 1999;
Joreskog & Sorbom, 1981).

Figure 1 illustrates a CFA model that consists of hypothetical
negative affect and extraversion constructs. Ovals represent the
hypothesized latent traits. Rectangles represent measured variables.
Arrows indicate hypothesized causal effects of latent traits on
measured variables. The numbers next to the arrows are the equivalent
of CFA factor loadings and indicate the estimated strength of the
causal effect. The two-headed arrow indicates a correlation between
latent traits. The number associated with the arc indicates that the
correlation is moderate in magnitude.

In the past, CFA required the analyst to define parameter
patterns for a number of matrices. Today, CFA is much more
accessible. This is underscored by the fact that the model in Figure 1
was constructed simply by drawing the picture and then linking the
picture’s components to variables in the database. The figure was
constructed using two different computer packages (LISREL and Amos) to
compare results. Most other commercial packages share this simple
method of model construction. Simplified methods have certainly
supported the more frequent use of CFA in behavioral research.
However, to optimize use of this method, underlying measurement issues
must be clearly understood.

Figure 1 illustrates several points. First, each measured
variable receives an arrow from just one of the two latent traits. The
other latent trait might exert an effect on each of the indicators,
but the paths for these possible effects have been fixed explicitly at
zero (i.e., no effect). This is an example of how CFA imposes a model
constraint. If the same model were developed using EFA, the omitted
arrows would appear as potential causal paths. EFA would estimate a

model in which all possible latent trait-measured variable arrows are
included.
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Angry
Negative 69
Affect i
39 Hostile
.85
Depressed
-.49
Warm
.54
Extraversion 51 »  Gregarious
.56
Assertive
Figure 1

A CFA Model for Two Personality Traits

The second point illustrated by Figure 1 concerns the correlation
between latent traits. This correlation is moderately large. An
alternative model could have been defined with the correlation fixed
at zero. The model in Figure 1 corresponds to an oblique rotation in
EFA; the alternative model would treat neuroticism and extraversion as
orthogonal factors. In this case, CFA removed a constraint that is
imposed by the typical default EFA. CFA can test the plausibility of
this constraint by comparing the goodness of fit of the orthogonal and
oblique models. Methods for this comparison are described in the
section on model appraisal and amendment .

The correlation between latent traits also can be used to
illustrate the flexibility of CFA. The correlation in Figure 1 could
be replaced by a causal effect. For example, an arrow from negative
affect to extraversion would indicate a model in which negative affect
caused people to be less willing to interact with others. Routine use
of EFA would make the factors orthogonal (i.e., zero correlation). The
correlation between latent traits could be introduced in EFA by using
an oblique rotation, but EFA cannot impose a constraint that one
latent trait is the cause of another. Causal interplay among
personality variables is not a common tepic of investigation, but it
might be useful in some areas. For example, patterns of perception and
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behavior that typify neurotic styles may have an underlying causal
pattern (Shapiro, 1965).

A third point of interest regarding Figure 1 requires some
amplification. The model is incomplete. A complete model would
include a disturbance for each measured variable. A disturbance term
is needed to reflect the fact that no measured variable is perfectly
correlated with the associated latent trait. Imperfect relationships
are expected, given that the measurement process generates some random
error variance. The disturbance term combines random error and
systematic variance from variables that are not in the model (James,
Mulaik, & Brett, 1982).

CFA obviously requires more thought and effort than EFA. The
payoff is greater flexibility in model construction. CFA provides
stronger tests of models. CFA programs estimate parameters (i.e.,
factor loadings, factor correlations) subject to the specific set of
constraints imposed by the investigator. If the resulting model
accurately reproduces the observed pattern of covariation between
indicator variables, the model has passed a riskier test than that
embodied by EFA. The test is riskier because the EFA can adapt the
number of dimensions, the pattern of factor loadings, and the pattern
of factor correlations to the data. By contrast, the advance
specification of these attributes of the model required in CFA
increases the chance that the model will fail to reproduce the
observed pattern of covariation. Thus, CFA is a relatively more
demanding test. If the hypothesized model does account for the data,
the result should be interpreted as stronger support (Meehl, 1990a).

CFA also provides tools for directly comparing alternative
theories. This aspect of CFa is relevant when theories differ with
regard to the range of behaviors relevant to different constructs in
the model. 1In such cases, different theories will specify different
numbers of dimensions and/or patterns of factor loadings for a given
set of indicator variables. These differences specify different CFA
models. The competing models can then be fitted to the data to
determine which one does the best job of reproducing the observed
patterns of correlation or covariance.

Models developed to deal with specific measurement issues
illustrate the flexibility and power of CFA. CFA models have been
developed to Systematically quantify Campbell and Fiske’s (1959)
conceptualization of convergent and discriminant validity (Lance,
Nobel, & Scullen, 2002; Marsh, 1989; Marsh & Bailey, 1991; Widaman,
1985). CFA can test circumplex models (e.g., Rounds & Tracey, 1993;
Tracey & Rounds, 1993). CFA can test hypotheses derived from Lord and
Novick’s (1968) parallel/tau—equivalent/congeneric test classification
(e.g., Millsap & Everson, 1991).

CFA also provides methods of addressing other recurring themes in

the measurement literature. The generality of measurement models has
been a longstanding concern (Blalock, 1982). CFA can evaluate

10
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generality within a single study by fitting one model to the data
gathered from two or more ygroups (e.g., males and females). Separate
models then can be fitted for each group. If fitting separate models
for each group does not substantially improve the overall fit, the
first model applies to all groups. CFA can also be used to test the
generality of previously published models even though the raw data
from the model is not available for analysis. Factor loadings from a
prior analysis can be used to define the model to be fitted to data
from a new sample. Good fit is analogous to cross-validating a
regression equation (Browne, 2000).

CFA can justify the use of standard psychometric models (e.g.,
internal consistency estimates of reliability). These models apply
when indicator variables are effects of the underlying trait; these
models do not apply when the indicators are causes of the trait
(Bollen & Lennox, 1991; Edwards & Bagozzi, 2000). Effect indicators
are correlated because they share the latent trait as a common cause.
Bollen and Ting (2000) provide a method of determining whether
potential indicators are cause, effect, or a mixture of the two. This
procedure may help clarify the structure of arguments over the proper
interpretation of a scale.

Factor Analysis and the Accumulation of Knowledge. Reliable
knowledge should be cumulative. From this perspective, EFA and CFA
can play complementary roles. EFA is most useful when little is known
about a measurement domain. Early EFA studies provide information
that can be used to formulate theoretical statements that are the
basis for later CFA studies. CFA studies can be used to develop and
evaluate a sequence of models. The Sequence can begin with relatively
unconstrained models and move toward models that specify factor
loadings and factor correlations.

Differences in Kind

Methods of assessing differences in kind have received relatively
less attention than methods of assessing differences in degree. The
greater emphasis on dimensional constructs is not necessarily an
indication that these constructs are more important than categorical
constructs. Meehl (1992) points out that whether a construct is
dimensional or categorical is not a matter of choice or preference.
The appropriate characterization is an empirical issue. From this
perspective, the preference for dimensional measurements may be a form
of bias.

Theoretical discussions that invoke typological language do not
always indicate that a typological model is appropriate or intended.
Sometimes behavioral researchers use typological language to simplify
their communication. For example, psychologists may contrast
extraverts and introverts to illustrate the extremes of a personality
dimension. In other cases, typological language refers to real
categorical entities. Psychiatric classification is probably the best

11
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known example of this usage, and illustrates the potential for tension
between typological and dimensional models. some theorists argue for
a dimensional model in this domain as well. These arguments echo
Meehl’s (1992) assertion that the choice between alternatives is an
empirical issue. Even though categorical language should not always
be taken at face value, there is a clear need for sound methods of
defining categorical variables in empirical terms. Good methods are
absolutely necessary for resolving measurement issues in some
important behavioral domains.

Military researchers may be interested in typological wvariables
in a variety of research contexts. Screening Programs provide cne
obvious example. It can be wasteful and potentially harmful to train
recruits who have personality disorders. Such individuals may leave
the military before training costs have been recovered through their
service. The stress of training and military life may produce lasting
psychological difficulties for the trainee who already suffers
psychological disorder. Sound typological measures may help to avoid
such negative outcomes.

The exploratory—confirmatory continuum used above to contrast EFA
and CFA can also be applied to differences in kind. The continuum is
most evident in methods of cluster analysis. These methods
traditionally have been applied with few restrictions on the Structure
of the resulting typology. Recent advances provide methods of
imposing restrictions based on prior research. In addition,
taxometric techniques provide alternative methods that focus on the
existence of specific types, such as those found in psychiatric
classifications.

Cluster Analysis. Cluster analysis is the most widely used
method of defining categorical variables empirically. Cluster
analysis begins with a set of cases (e.g., people, organizational
units), each of which is represented in the data by a score profile.
The analysis problem to define a set of groups that meet two basic
Criteria. First, cases assigned to the same group must have similar
profiles. Second, the profile for the average case must differ
substantially between groups. The first criterion can be satisfied
best by having a large number of groups. Having many groups makes it
possible for all cases within the group to have identical or nearly
identical profiles. Having fewer groups most often satisfies the
second criterion. This criterion provides a basis for combining
groups with very similar, but not identical, profiles.

The data analyst must make several decisions when conducting a
cluster analysis. The analyst must select a method (e.g.,
hierarchical agglomerative or direct), a similarity index (e.qg.,
Euclidean distance with or without standardizing indicator scores),
and a rule for determining group membership (e.g., average linkage or
nearest neighbor linkage) . Thus, cluster analysis is similar to
factor analysis in the sense that the general procedure can take the
form of a variety of different analyses for any given data set.

12
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Different choices may lead to different results, so researchers must
recognize the implications of the choices they make or read about in
research reports. Gore (2000) provides an overview of cluster
analysis. Aldenderfer and Blashfield (1985) provide a brief
introductory text. Everitt, Landau, and Leese (2001) provide more
detailed guidance, including advice about computer programs.

The results of exploratory cluster analyses (ECAs) must be viewed
with skepticism. These procedures always produce clusters. The
problem is not to decide whether there are clusters, but rather to
determine how many empirical clusters represent real and distinct
classes in the population. When Milligan and Cooper (1986) reviewed
indices designed to help make this decision, the Hubert and Arabie
(1985) adjustment to the Rand (1971) index was determined to be the
best option. However, no single index is accepted today as the best
option for determining the number of clusters (Gore, 2000). One
reason may ke that the rules are not available in standard computer
packages.

The indices for establishing the number of clusters are based on
the analysis of a single set of data. Replication of different cluster
solutions across samples is another viable method. This method can be
applied even in a single set of observations by dividing the set into
subsets (Overall & Magee, 1992), but results must be interpreted
carefully (Krieger & Green, 1999).

Empirically defined cluster solutions reguire further study to
validate the typology. No matter which rule is applied, there is no
guarantee that the resulting clusters will have any real meaning. The
initial cluster definition can be a starting point for subsequent
validation of the typology, but construct validation 1s a necessity
before the typology is accepted as meaningful.

Recent developments provide a stronger approach to cluster
analysis (Fraley & Raftery, 2002). Newer procedures are similar to
CFA in structure because they provide the investigator the opportunity
o constrain the cluster solution.

Recent developments in cluster analysis extend Wolfe’s (1970)
early work on mixtures of normal distributions. Today, the
investigator can specify the structure of a group by defining the
means, variances, and covariances for the indicators. The number of
group structures specified determines the number of clusters in the
analysis. 1Individual cases are assigned to clusters by computing the
probability of membership in each of the hypothesized groups. The
expectation-maximization (EM) algorithm (cf., McLachlan & Krishnan,
1997) is applied to compute these probabilities. The goodness of fit
of the model to the data is indicated by x° statistics produced by the
EM algorithm, so significance tests are an option for determining the
number of groups.

13
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The EM approach to cluster analysis is a clustering analogue of
CFA. 0Older procedures relied on mathematical criteria to define the
number of groups and their boundaries. EM uses parameter values
established by the analyst to define the groups. Those parameter
values can be based on theory or past research. Constraints can be
imposed to explicitly test alternative hypotheses about the structure
of the typology. In the future, a distinction between ECA and
confirmatory cluster analysis may become as common as the distinction
between EFA and CFA.

Latent Class Analysis (LCA). LCA also defines typologies, and is
used when the indicator variables being analyzed are categorical. In
such cases, the data define a matrix with many different cells. Each
cell represents one of the possible score profiles for the cases in
the sample. LCA capitalizes on the fact that cases are not likely to
be evenly distributed across all possible cells. Classes are subsets
of the data set that represent particular score profiles. The
profiles may be defined by the entire set of indicators or by a subset
of those indicators.

As an example of the LCA problem, consider a disease that
produces eight symptoms. If a questionnaire were constructed to
determine who had the disease, each person who completed the
questionnaire would respond “Yes” for each symptom that was present
and “No” for each symptom that was absent. Taken together, the eight
questions define 256 possible symptom combinations. However, suppose
that four of the disease Symptoms were physical and four were

sychological. Some people might report suffering no symptoms at all,
some only physical symptoms, some only psychological symptoms, and
some might report having all eight (physical and psychological)
symptoms. If these were the only response patterns that were
oObserved, a four-group classification would be a reasonable
representation of the data. The analysis problem would be to identify
these four latent classes of respondents.

LCA tests for the existence of clustering in situations such as
that described above. McCutcheon (1987) described the basic
procedures and noted explicitly that LCA categories do not necessarily
define a dimension. Conditional independence is fundamental to LCA.
Independence is indicated by the absence of a correlation between
responses on different indicators. Conditional independence has two
elements. Independence is conditional if the indicators are
uncorrelated within the classes in the LCA, but are correlated in the
overall sample. LCA groups observations such that the resulting
classification approaches conditional independence as closely as
possible. The sum of the within-class x? values is an index of how
closely this objective has been approximated.

Several points should be kept in mind concerning LCA. First, a
x° significance test is the usual basis for choosing the appropriate
number of classes. As discussed later in this chapter (see Model
Evaluation), this criterion may tend to produce too many groups when
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large samples are studied. With large samples, even small changes in
the absolute fit of the model to the data will be statistically
significant. Second, LCA suffers from indeterminacy problems.
McCutcheon (1987, p. 25) notes that multiple solutions may provide
equivalent fit to the data. Recent developments extend traditional
LCA. Magidson and Vermunt (2002) distinguish LCA from latent class
factor analysis (LCFA). LCFA defines categorical equivalents of EFA
factors. Specifically, each LCFA dimension defines a categorical
variable with two or more levels. Magidson and Vermunt (2001)
demonstrate that the LCFA models can be more parsimonious than LCA
models when considered at the level of the overall model. Thus, as a
simple example, three parameters are needed to represent four groups.
Only two parameters are needed to define the same four groups based on
two dichotomous LCFs. Greater parsimony is indicated by the fact that
fewer parameters are needed to correctly classify individuals (Popper,
1959).

Magidson and Vermunt (2002) have also shown that in at least some
instances, LCA can classify cases more accurately than K-means
clustering, which is the more common direct partitioning method of
cluster analysis. In discussing their findings, Magidson and Vermunt
(2002) note two important advantages of LCA over K-means analysis.

The first is that classification involves computing the probability
that each case is a member of each group. This probability then is
used to weight the case when computing the group centroid, which
avoids biased estimates that may be derived by the K-means approach of
weilghting all cases equally. Second, the LCA approach provides
diagnostic information that can be used to determine the number of
clusters. These x* statistics can be used to construct GFIS. These
indices, which are discussed in the Model Appraisal section of this
chapter, provide a means of judging the accuracy with which a given
model reproduces the observed distribution of cases across the cells
in the cross-classification.

Taxometrics. Taxometric procedures (Meehl, 1992, 1995; Waller &
Meehl, 1998) are another method of testing the claim that distinct
groups exist within a population. This method focuses explicitly on a
two-group solution. The hypothesized groups are a target group to be
identified (i.e., taxon) and all others. Indicators of taxon status
are assumed to be uncorrelated within each group (i.e., locally
independent) . Between-group differences produce correlations between
the indicators in the general population. Taxometric procedures test
for the existence of the hypothesized taxon and the base rates for
that group and its complement.

The taxometric approach was developed initially in the context of
a model of schizotypy, but this technique subsequently has been
applied to other concepts such as “Type A” behavior (Strube, 1989). a
recent simulation by Beauchaine and Beauchaine (2002) compared
taxometric procedures to K-means cluster analysis. Taxometrics,
specifically the maximum covariance procedure, was more effective
“..when the number of indicators was few, when effect sizes were
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reduced, when nuisance correlations were high, and when base rates

were low" (p. 256). This comparison is limited by the use of a single
taxometric procedure; convergence of several methods is preferred
(Meehl, 1992, 1995). On the other hand, the use of EM-based

clustering methods (Fraley & Raftery, 2002) also might have changed
the results. This possibility is supported by a recent simulation
study that found taxometric procedures and latent mixture modeling
superior to direct cluster analysis (Cleland, Rothschild, & Haslam,
2000). However, the use of a poor criterion for deciding the number
of clusters may have influenced these results.

Typological Analysis and the Accumulation of Knowledge.
Cumulative knowledge is evident when a research domain moves from
exploratory analysis to confirmatory analysis. Recent developments in
typological analysis procedures provide tools to move the
identification of “differences in kind” toward confirmatory modeling.
Traditional cluster analysis and LCA procedures are largely
exploratory since they provide only limited opportunities for the data
analyst to constrain solutions. Both EM cluster analysis and
taxometrics provide greater opportunities for using prior knowledge to
constrain the models. LCFA analyses are primarily exploratory, but
they are noteworthy because they provide alternative models that can
be contrasted with LCA results.

The previous comments on factor analysis and knowledge
accumulation apply to the construction of typological measurement
models. Confirmatory models reguire parameter specifications.
Confirmatory models represent cumulative knowledge when the parameter
values have been derived from prior research. A priori parameter
specification implies the same risk found in confirmatory tests of
dimensional models. Results consistent with the model in spite of the
risk provide stronger support for the model than the relatively
qualitative evaluations provided by exploratory methods. The strategy
of combining confirmatory methods and exploratory methods is good
practice. This approach combines consistency (i.e., similarity to
prior findings) testing with an exploratory search for better
alternatives.

Measurement MAGIC

The preceding discussion of methods of developing measurement
models has emphasized movement from exploratory to confirmatory
models. Progress from the initial unstructured exploratory analysis
to a final, completely specified confirmatory model should be
accompanied by a general increase irn Abelson’s (1995) MAGIC criteria.
Each element of MAGIC is briefly considered here.

The magnitude component of MAGIC conceivably could decline as a
field of study progresses from early exploratory measurement models to
final confirmatory models. Early models can account for more of the
patterning in covariation or similarity measures by capitalizing on
chance. The a priori specification of parameter values eliminates the
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opportunity to incorporate chance into final models. Final models can
be expected to exclude minor systematic sources of covariance and
similarity (MacCallum, 2003). A final model will be acceptable if it
captures the major systematic sources of variation in the indicator
variables even if the overall explanatory power of this model is less
than the apparent explanatory power that exploratory models achieve by
capitalizing on chance.

The articulation of measurement models clearly increases with the
progression from exploratory models to confirmatory models. A graph
such as that in Figure 1 provides one way of thinking about model
articulation. The model in Figure 1 is relatively simple because the
number of latent traits is restricted and because some potential
trait-indicator relationships have been ruled out. This simplification
is articulation in the sense that it specifies particular traits and
separates potential causal paths into those included in the model and
those that either do not exist or are small enough to be ignored. For
example, previous research by Costa and McCrae (1992) and others could
have been used to specify the factor loadings for the model in Figure
1. Had this been done, the model would have been fully specified in
advance of the analysis. The fully specified model would have provided
complete articulation. Every latent trait, every causal effect, and
every parameter value would have been specified a priori. If one
compared a graph of the a priori specifications for EFA and CFA, the a
priori definition for Figure 1 in EFA would consist solely of the list
of variables at the sides of the figure. There would be no ovals or
arrows. The additional specification of latent traits and causal
effects in Figure 1 is a pictorial manifestation of model
articulation.

Generality may or may not increase in the progression from
exploratory to confirmatory models. While generality is usually
assumed for new constructs, this attribute should be empirically
established in the process of developing the measurement model
(Blalock, 1982). CFA provides tests for generality that may extend to
categorical analyses. The CFA methods for assessing generality rely
on goodness of fit evaluations that could be readily adapted to the
mixture approach to cluster analysis. However, tests for generality
may indicate that different models are needed for different
populations. If so, models should reflect that fact rather than
treating different groups as equivalent.

Interest may be a constant in the sequence. Initial results
often are interesting because they are novel and shed light on
previously unknown territory. This interest should be tempered by an
appreciation of the possibility that the findings are the product of
chance. This interest also should be tempered by the realization that
the results probably rest on assumptions that need to be tested.
After initial model development, the clarity with which an analysis
contrasts competing models may determine its interect value (Dixon &
O'Reilly, 1999). As models mature, verification that a final model
fits the data from a new sample should be interesting. However, at
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this point, the strongest evidence might be the a priori prediction of
the parameter values (i.e., the pattern of factor loadings) for a new
indicator. This a priori prediction would be the type of “darned
strange coincidence” (Salmon, 1984) that provides support for a
theoretical model. Given these suggestions, interest in a field will
be maintained by novel predictions and/or progression in articulating
and contrasting alternative models.

Credibility should be greater for models that are near the
confirmatory end of the model development sequence. This exploration
should consider a range of plausible interpretations and alternative
models for the constructs of interest and for mappings of indicators
onto constructs. Credibility is enhanced by the use of confirmatory
techniques to determine whether the indicators are effect variables,
to rule out interpretations based on methods variance, and to
demonstrate convergent and discriminant validity. The key to
credibility is the model’s cumulative track record (Meehl, 1990a).
The final model should be the one that best accounts for the data from
multiple studies.

Path Models

Path models describe relationships among theoretical constructs
(McDonald & Ho, 2002). The methods available to construct path models
include regression and analysis of variance (ANOVA) . These procedures
represent a subset of the possible methods for constructing and
testing path models. The extensive range of alternatives available 20
years ago {(Andrews, Klem, Davidson, O0'Malley, & Rodgers, 1%81) has
grown (Andrews et al., 1998). This section will consider a shift in
the rationale for choosing among alternative methods and will then
examine structural equation modeling (SEM) and hierarchical linear
modeling (HLM) as procedures that are likely to be used with
increasing frequency in the future. Latent growth curve analysis
(LGCA) and the analysis of CLDV are also considered as methods that
simplify the approach to key modeling issues. These methods can be
implemented in the context of SEM or HLM.

Selecting a Modeling Method

Twenty years ago, level of measurement issues might have been a
primary consideration when selecting an analysis procedure (Andrews et
al., 1981). The phrase “level of measurement” refers to the
information content of the variables used in analyses. According to
Nunnally and Bernstein (1994), nominal measures assign observations to
categories that have no intrinsic ordering (e.g., male, female).
Ordinal variables indicate relative magnitude (e.g., greater than,
less than) for an attribute. Interval measures indicate order and the
distance between observations. Ratio measures order observations,
indicate distance between observations, and indicate distance from a
zero value.
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Level of measurement can be a guide to selecting analysis
procedures. For example, Pearson product moment correlations would be
computed to describe relationships between interval measures, but
Spearman’s rank order correlation would be computed to describe
relationships between ordinal measures. This approach to choosing an
appropriate statistic can be extended to a wide range of analysis
problems. Doing so produces a complex decision tree with branches
that often culminate in little known statistics (Andrews et al.,
1981). Today, this approach is made easier by statistical software
routines that make once obscure statistics more readily available.

Current trends shift the emphasis from data characteristics to
the nature of the construct being studied. If the constructs being
studied are continuous variables, analyses are chosen to obtain the
best estimate of the population correlation that can be derived from
the data. This focus is maintained regardless of the level of
measurement. For example, consider the problem of estimating the
relationship between two continuous constructs when one has been
measured with an ordinal scale and the other with an interval scale.
The level of measurement might lead to the use of a rank order
correlation because rank order information is the least common
denominator for the two measures. However, if both constructs
theoretically are differences in degree, a polyserial correlation is
an appropriate estimate of the true population correlation. Some
standard analysis packages now would provide this theoretically
appropriate estimate as a default (Joreskog & Sorbom, 1996). 1In
effect, the information provided by the scales is used to obtain the
best possible estimate of the theoretically relevant population
parameter regardless of the level of measurement.

Structural Equation Modeling (SEM)

SEM techniqgues have been so widely applied that a detailed review
of their uses would be unmanageable in any brief format. Bentler and
Dudgeon (1996) and MacCallum and Austin (2000) provide recent
overviews of these methods. Investigators who are just beginning to
use SEM can choose from a growing number of texts. However, the choice
should be made carefully. Many introductory texts gloss over critical
considerations (Steiger, 2001). Bollen (1989) provides a sound
introduction to the general method. The current chapter will limit
consideration of SEM to specific recent developments that are
particularly relevant to the range and content of models constructed
using this tocol.

Modeling Interactions. Interactions occur when the relationship
between two variables is contingent on one or more other variables.
For example, an investigator might be interested in determining
whether the relationship between general intelligence and job
performance was the same in different occupations. TIf the physical
demands of different occupations were known, the question might be
whether intelligence has less effect on performance in physically
demanding jobs.
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The use of SEM to model interactions is analogous to more
familiar procedures. Analysis of covariance (ANCOVA) 1is one method of
investigating interactions. Nonparallel regression lines illustrate
the essence of an interaction. Consider a two-group analysis. In
this case, a significant result in a test for nonparallelism of
regression lines means by, # by, (b1; is the slope of a regression line
in the j* group) . Moderated regression (Saunders, 1956) is another
method. In this case, y = by + bix; + box, + b.x,x,. The contingency in
this case can be illustrated by considering that the slope of the
regression for x, is by, when x, = 0, Dy + by when x, = 1, and b, + 2D,
when x, = 2.
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Figure 2
Example of Moderated Regression Result

Figure 2 illustrates moderated regression. Gelattly and Irving
(2001) tested the hypothesis that job autonomy moderates the effects
of personality on job performance. The hypothesis was supported for
the Agreeableness scale of the NEO-FFI (Costa & McCrae, 1992). Figure
2 illustrates the resulting interaction by plotting the regression of
performance on agreeableness for high, medium, and low autonomy . An
interaction is indicated by the fact that the lines are not parallel.

20



Statistics and Model Construction

The lines would be parallel if performance were simply an additive
function of agreeableness and autonomy. The nonparallel lines mean
that the relationship between personality and performance depends on
the level of autonomy. This contingency indicates an interaction.

The moderated regression approach was not always accepted as a
legitimate method of modeling interactions. A debate on the use of
this method once focused heavily on how to provide appropriate
statistical significance tests. Of central concern was the
confounding of main effects with interaction effects (i.e.,
collinearity). Cohen (1978) facilitated widespread use of the method
by showing that analyses produced the same conclusion regarding the
presence of an interaction whether or not special steps (e.g.,
standardizing the variables) were taken to reduce this problem. In
this special case, a crucial element of the principled debate could be
resolved in purely mathematical terms. Such definitive argument
resolutions are rare in behavioral research.

SEM includes analogues to both the ANCOVA and moderated
regression methods of modeling interactiocns. Subgroup models provide
the SEM equivalent of the ANCOVA approach. Subgroup analysis divides
samples into groups based on some characteristic(s), such as
occupation or gender. Two versions of an SEM then are fitted to the
data in each group. One version constrains the model parameters to be
equal for all the groups in the analysis. This step is equivalent to
conducting ANCOVA assuming that a single regression line applies to
all groups. Other versions permit differences in parameter values
across groups. If removing the equality constraints vyields
substantially improved predictive accuracy relative to the first
model, model parameters cannot be considered equal in the groups.
This result is equivalent to finding nonparallel regression lines in
ANCOVA.

The SEM analogue of moderated regression creates cross-product
terms by multiplying scores on indicator variables. This method of
testing for interactions is common in some areas of research (e.g.,
industrial-organizational psychology). A debate has been in progress
in the SEM literature since Kenny and Judd (1984) first introduced the
basic method. Subsequent work by Ping (1995, 1996) and Joreskog and
Yang (1996) simplified the implementation of the original method.
Topics under discussion today include how many interaction indicators
must be included in a model and how to differentiate curvilinearity
from an interaction. Significance tests in this area are sensitive to
the underlying distributions of the variables. Schumacker and
Marcoulides (1998) summarized available methods and the ongoing debate
about how to best specify and estimate interactions.

Interactions and curvilinear relationships almost certainly will
be continuing concerns in theory development and modeling. The
current state of the art does not provide definitive direction
regarding the best method of addressing these issues. Steiger (2001)
recommends reading Rigdon, Schumacker, and Wothke (1998) and Joreskog
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(1998) (Schumacker & Marcoulides, 1998) as context for other recent
works 1in Lhis area. Investigators may also wish to consider issues
related to methodological limitations of applied research that affect
the results from moderated regression analyses (McClelland, 1997;
McClelland & Judd, 1993; Russell & Bobko, 1992; Russell, Pinto, &
Bobko, 1991). These limitations may be even more problematic than the
purely statistical issues.

At present, the multiple-group approach is the preferred option
for modeling interactions in SEMs. Applications of this approach can
be viewed as a multivariate extension of moderator analysis. The
literature on that procedure may provide useful gualitative guidelines
to help avoid some potential problems (e.g., Zedeck, 1971) .

Latent Growth Curve Analysis. Growth curves are a special area
of interest in SEM. The analysis of change is a longstanding problem
(Harris, 1963). However, pattern of change must be analyzed to
address many interesting and important research questions about
adaptation and development. For example, how do individual recruits
adapt to the psychological stress of boot camp? How do the attitudes
that affect reenlistment develop over time? Can early patterns of
change be used to predict success and failure in military service?
Such questions can be addressed today by modeling change as growth
curves.

The SEM approach to quantifying change was stimulated by Rogosa
and his colleagues (Rogosa, Brandt, & Zimowski, 1982; Rogosa &
Willett, 1985). Growth curve analysis can be applied when a variable
of interest is measured at several points in time. Given multiple
measurements, a growth curve expressing the level of the measured
variable as a function of time can be fitted to the data for each
individual. Fitting the function yields a set of parameter values for
each individual. If growth were linear over time, the parameters
would be the slope and intercept of a regression equation that applied
to a specific individual. Those parameter values then can be treated
as dependent variables in analyses that relate them to attributes of
the individual, group membership, and other potential predictors. The
growth curves fitted to data usually are fairly simple (e.g., linear
growth), but many different curves are possible in principle (Rogosa &
Willett, 1985).

SEM 1is not the only method of analyzing latent growth curves.
Raudenbush and Bryk (2002; Raudenbush, 2001) have extended the growth
curve approach to include the construction of multilevel models (cf.
Hierarchical Linear Models [HLM]) discussed in the following section.

Hierarchical Linear Models
Factors affecting behavior often have a hierarchical structure.
Consider, for example, the problem of modeling morale during military

basic training. Morale could be measured at weekly intervals during
training. Other variables would be measured to understand the factors
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that affect morale. These variables could include recruit
characteristics (e.g., age, gender, personality), unit membership
(e.g., platoon, division, flight), and unit characteristics (e.g.,
number of recruits, average intelligence test scores, average
experience of instructors). Models describing morale can be
constructed from the combination of trends over time and a combination
of individual and group characteristics.

HLM provides a general method of addressing research problems
such as that described in the previous paragraph (Raudenbush, 2001;

Raudenbush & Bryk, 2002). The basic problem is hierarchical because
it involves several distinct levels of analysis. The first level
consists of within-person processes. In the morale example, the

within-person model would describe changes in morale over time for a
single individual. Suppose morale was low early in training and then
increased at a constant rate over time. This temporal pattern could
be modeled by representing morale as a linear function of time. The
model for each person would consist of the slope and intercept for the
linear model. The linear model would be the latent growth curve for
morale for that individual.

The second level would introduce individual differences as a
factor in morale during training. Recruit characteristics could be
used to predict differences in the slopes and intercepts estimated in
the within-person level of analysis. The modeling process could be
extended to a third level that characterized unit differences in
morale. This level of the model would test for average differences in
the intercept and slope of the within-person model. This level also
would relate the average differences to the unit characteristics that
had been measured. The HLM approach, therefore, makes it possible to
analyze changes in morale as a combination of within-subject, between-
subject, and between-unit effects.

HLM addresses two important limitations of traditional behavioral
models. Traditional models commonly follow disciplinary boundaries
that treat growth processes, individual differences, group dynamics,
and social environment as distinct research topics. These
distinctions can lead to incomplete or biased models when the behavior
of interest is affected by factors at more than one level of analysis.
In such cases, the predictive accuracy of single-level models is
limited by the fact that some systematic sources of variance are
omitted. The model is incomplete and therefore cannot fully account
for the data. Focusing on a single level of analysis also can bias
estimated effects for the current level of analysis. Bias will occur
when variables in the single-level model are confounded with causal
factors at other levels of analysis (cf., James et al., 1982). HLM
provides tools to produce models with greater explanatory power by
combining the several levels of causal factors. The same tools
produce more accurate estimates of the effects of factors at each
level controlling for the effects of factors at other levels.
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The advantages of HLM can be critical to a proper understanding
of behavioral phenomena. For example, Duncan, Jones, and Moon (1993)
analyzed the health behavior of people living in different regions of
the United Kingdom. Previous research suggested that health behavior
differed between geographical regions. Those differences could be
interpreted as evidence that regional cultural differences affected
behavior. Duncan et al. (1993) used HLM to show that the reported
geographical differences were almost completely explained by

demographic differences between regions. In a very different context,
Sliwinski and Hall (1998) applied HLM to assess claims that aging
exerts a general negative effect on all mental capacities. Sliwinski

and Hall’s (1998) hierarchical model grouped the mental tests into
categories. When those categories were included in the model, age
effects were limited to just a subset of the mental capacities. These
examples (and others, see Raudenbush & Bryk, 2002) illustrate that HLM
can be applied to problems ranging from processes occurring within
individuals to processes that characterize broad socioeconomic
groupings.

HLM could be extremely valuable in military behavioral research.
Previous applications of this methodology in educational research
(cf., Raudenbush & Bryk, 2002) have obvious parallels to military
research on education, but the potential extends well beyond this area
of study. The key elements of the method are the availability of a
series of measurements on individuals combined with a hierarchical
structure of some type. The approach could be applied to topics such
as evaluating different weight loss programs by determining growth
curve paramecters for participants. The relationship between average
growth curve parameters and quantitative or qualitative
characteristics of the programs could be analyzed to identify the
critical ingredients of effective programs. These analyses could
include adjustments for the effects of individual differences on
growth curve parameters. The adjustment would make it possible to
estimate program effects while controlling for differences in
personnel composition.

The use of HLM could stimulate theory development by integrating
models from traditionally distinct research disciplines. Theoretical
statements from individual differences in psychology, social
psychology, sociclogy, and organizational psychology can be combined.
This end is achieved by developing models that treat the individual,
the small group, and social categories as different levels in a
hierarchy. Parameters for the various perspectives can be estimated
in a single analysis. The estimation procedures adjust for
differences at other levels within the model, so allowance is made for
group composition when analyzing unit effects and vice versa
(Raudenbush & Bryk, 2002).

The merging of theoretical perspectives could increase the

importance of models of group dynamics in some key areas. For
example, delinquent behavior (e.g., attrition, nonjudicial punishment)
is more prevalent in some military units than others. If the
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differences remain after controlling for unit composition, attention
to explanations based on unit factors is a reasonable step. Military
tradition makes it likely that leadership would become one focus of
inquiry. However, leadership may not be the source of the unit
differences (Vickers, Hervig, Wallick, & Conway, 1984). If so,
alternative models must be considered. Behavioral contagion
(transmission of negative attitudes from one person to another) 1is an
example of a possible alternative (Jones, 1998). Properly applied,
HLM can test individual difference, unit leadership, and behavioral
contagion models at the same time. This joint representation of
multiple levels of analysis in a single model may be needed to
represent the complexity of the influences on real behavior.

Using HLM to avoid incomplete and biased models will introduce
new research design issues. In general, the organizational units
studied are only a sample from a population of gimilar units. This
observation raises sampling issues. How many units should be sampled
to accurately estimate effects? A large sample of individuals no
longer guarantees adequate sampling. The sampling frame for a study
must include units as entities to be sampled. If it is convenient, all
of the unit personnel may be included in a study. However, covering an
adequate sample of units could require collecting data from very large
numbers of individuals. If the cost of collecting data from an
individual is high, it may be necessary to use stratified sampling
within units.

One aspect of HLM is notewcrthy to avoid confusion when
considering this method in conjunction with other methods discussed
here. In the context of HLM, a latent variable is any unmeasured
variable (Raudenbush & Bryk, 2002). Thus, references to latent
variable modeling are not equivalent to references to latent trait
modeling in SEM. Instead, latent variable discussions in HLM are more
likely to address problems such as the imputation of missing data. In
this case, the missing data comprise a latent variable in the sense
that each case presumably has a specific value, but that value is not
measured in the study. These superficially different uses of the term
vlatent variable” are not contradictory. Instead, the different
applications of the term represent different instances of unmeasured
variables. The development of an integrated perspective on latent
variables is an ongoing topic of discussion in data analysis generally
(Bollen, 2002).

Categorical and Limited Dependent Variable (CLDV) Models

A wide variety of models can be grouped together under the
heading of CLDV models. These models deal with dependent variables
that are categorical (e.g., pass-fail) or time-limited in some way
(e.g., the observation period is stopped or participants die, move
away, or refuse to continue participation). TIn each case, the nature
of the dependent variable creates difficulties because it either 1is
not linearly related to predictors or because error variance 1is
heteroscedastic, or both.
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Military researchers often encounter CLDV. Examples of
dichotomous categories include pass-fail measures of success in
training programs, attrition, and reenlistment. More complex
categorical criteria are represented by specific reasons for attrition
(e.g., medical, behavioral, administrative) or rank/rate at the end of
a period of enlistment. Time-limited variables can occur when an
individual is transferred from one unit to another or returned to
civilian status prior to completing an enlistment. Accurate modeling
of CLDV obviously is important.

Recent developments have produced an integrated approach to CLDV
models. The approach has two fundamental elements (McCullagh &
Nelder, 1989). Each model has a transformation component known as a
link function. The link function generates transformed variables that
have linear relationships to predictor variables. The choice of a
link function depends on the nature of the dependent variable. The
critical point is that the transformed variables can be analyzed using
familiar linear regression methods.

The second element of CLDV models is known as the systematic
component. This component is a linear model quantifying the
relationships between predictors and the transformed dependent
variable generated by the link function. CLDV models can be fitted
using the general linear model (GLM) approach to obtain appropriate
statistics.

The link function approach to CLDV has several positive
characteristics (Long, 1997). The most important is that it is no
longer necessary to settle for linear approximations to more comp lex
relationships. Complex mathematical functions can be approximated by
linear functions over narrow ranges of scores. 1In the context of
CLDV, this fact means that a traditional linear model based on raw
data can have acceptable predictive power even though it does describe
the true functional relationship between the predictors and the
dependent variable. The apparent predictive power can be misleading.
For example, basic assumptions such as homoscedasticity of error
variance can be violated. More importantly the resulting eguation may
give the impression that outcomes (e.g., risk of attrition) increase
equally with each point in the scale score. In fact, the change may
be much greater in some areas of the score range than in others. The
appropriate mathematical expression must be employed to accurately
assess effects and accurately predict outcomes.

Capitalizing on the advances in CLDV analysis also provides other
payoffs. Link functions make it possible to apply familiar methods
from regression analysis to build more robust models. For example,
outlier and influential data points can be identified in CLDV analyses
using the same procedures employed in linear regression. As another
example, polynomial regression can be used to express the transformed
variable as a nonlinear function of a predictor. The link function
approach also makes it possible to apply maximum likelihood methods
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for estimating parameter values. Thus, familiarity with this general
approach to estimation helps construct CLDV models.

CLDV models cannot be interpreted directly. Link functions
involve nonlinear transformations. The transformation must be
reversed to predict the original variable. The reverse transformaticn
must be considered because a change of one unit in a predictor can
have very different effects in different SCore ranges. For example,
in a logistic regression model, the effect of a one-point difference
in scores is not the same over the full range of scores. At the high
and low ends of the range, a one-point difference typically will have
little effect on the predicted outcome. The same difference can have a
pronounced effect in the middle range of the score distribution. This
point should not be a barrier to the use of CLDV methods. The
benefits of the approach make it worthwhile to take the time to
understand its procedures.

One ongoing line of development in CLDV analysis is of special
interest for model construction. The use of specific contrasts within
a GLM approach to CLDV has been explored as a method of formulating
and testing alternative causal paths (von Eye & Brandstadter, 1998).
These causal paths include a "wedge” by which two causes can cause a
single outcome, a “fork” by which a single cause can lead to different
outcomes, and a “chain” by which a cause and an outcome are linked by
an intermediate variable. This approach holds promise of making it
possible to use procedures such as loglinear modeling to test very
specific causal hypotheses expressed entirely in terms of categorical
variables. The basic method draws on the construction of contrasts
that are similar to those found in ANOVA, but the structure of the
contrasts is linked to specific hypotheses about sources of causal
effects.

Path Models and MAGIC

The methods described above can increase the quality of evidence
available to principled argument process. The relationships between
these methods and MAGIC criteria are too complex to describe in
detail. However, some examples of potential gains can be provided.

Good explanatory power (magnitude) is a fundamental goal of
modeling. This goal can be promoted several ways.

® The HLM discussion illustrated the potential for combining
sources of variance that might be explored independently in
traditional models. The combination should increase overall
explanatory power. The combination strategy also reduces the
risk of biased parameter estimates.

®* OSEM can provide greater insight into the true strength of
associations. This gain is expected because SEM estimates are
corrected for measurement error. The modeling implication is
that a given model will not be preferred to an alternative
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simply because the first ig represented by more reliable
measurements.

® Advances in CLDV analysis methods make it possible to replace
linear approximations involving raw variables with appropriate
functional relationships. For example, probit or logit
analyses can be used in place of linear regression. These
tools, therefore, have the potential to increase the magnitude
of associations.

Articulation will improve. The task of accurately translating
verbal statements of theory into mathematical equations is difficult
(Blalock, 1969). The difficulty increases if the analysis cannot
incorporate key elements of the theory. Key elements may include
nonlinear or curvilinear relationships, equality or proportionality
constraints on specific parameters, and interactions. The methods
described here make it easier to build these details into models.

Generality is an empirical question, as noted earlier. The basic
issue is whether a single model 1is appropriate for all entities (e.qg.,
people or groups) or if specific models are needed for different
classes of entities (e.g., men and women). The methods described here
can be applied to test for generality. SEM methods of testing for
generality have been alluded to in connection with measurement models.
HLM provides a great deal of flexibility in specifying alternative
models. This flexibility could be employed to contrast models that
specify a single general equation with models that specify equations
nested within different subgroups. Because HLM methods include the
link transformations Hnecessary to apply the CLDV approach (Raudenbush
& Bryk, 2002), HLM tests for generalizability extend to those analyses
as well.

Interest value may also be improved by the methods described
here. The process of articulating the rationale for a model is likely
to stimulate thinking about alternative models. Comparing plausible
alternatives is more interesting than simply evaluating a given model
in isolation. QGiven similar models, the use of methods that make it
possible to isolate key differences between models will increase
interest value. The methods described in this section can promote
analyses that focus on critical parameters that differ between models.
The effects of modifying those specific parameters may be modest in
terms of the absolute fit of the model, but still could be important
for choosing between alternative models. The methods described here
also should increase interest value by creating stronger links between
theory and the mathematical representation of the theory. The
empirical representation of this linkage mav be a link function that
transforms a dependent variable.

Finally, the credibility of theoretical assertions should be
improved by recent advances in statistical modeling. Clear
articulation of links between theory and statistical models imply more
convincing use of data to evaluate theories. Credibility is supported
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by direct comparison of models based on different theoretical
positions and by stronger empirical tests of claims for the generaliity
of different models. Because this process reduces the likelihood of
confirmation bias, credibility should increase even if the evidence
does not clearly sSupport one model over competing alternatives.

Model Evaluation

Once constructed, a model must be evaluated for its adequacy .
Rigorous evaluation is Critical to research progress. Evaluation
includes an appraisal of the existing model and subsequent amendments
to improve the model. This section of this Chapter examines the state
of the art in these two areas of behavioral research.

Two points must be kept in mind when considering the problem of
model evaluation. First, statistical models are sets of parameter
estimates. The coefficients in a linear regression are an example of a
set of parameters. The parameters in a statistical model must be
interpreted to obtain a substantive model. Indeed, interpretation is
the main business of research (Kirk, 1996). Statistical models
generally are evaluated in terms of statistical criteria. While this
bractice is reasonable, one should not lose track of the fact that
model interpretation is a Separate issue. This point raises two
important issues concerning the use of statistical guidelines in model
evaluation and selection. First, when considering alternative
statistical models, the best model by statistical criteria may not
always be the most blausible. Consideration should be given to
rejocting this model if another model fits the data (nearly) as well
and is more plausible substantively. Second, model evaluation should
include steps to explicate the relationship between Statistical
parameters and behavior. This relationship may not always be
straightforward. Taken together, these issues are a reminder that
statistics are only one basis for choosing between alternative models.

Another important point is that behavioral phenomena are complex.
Complete behavioral models would have to include many parameters to
reflect this complexity. In practice, parameters that contribute
little to the overall accuracy of the model are omitted. As a result,
models are only approximations. This point is acknowledged explicitly
in the SEM concept of errors of approximation (Browne & Cudeck, 1993;
MacCallum, 2003). These small systematic errors mean that behavioral
models cannot be expected to predict behavior with perfect accuracy.
Instead, the modeling goal should be an acceptable approximation to a
complete model. The stopping point for model development is reached
when only small effects are omitted. Seriin and Lapsley (1985) refer
Lo this endpoint as the "good enough” principle for model
construction.

Model Appraisal

Two general Criteria-statistical significance and explanatory
power—serve as central points of departure for this section. The
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central theme here is that it is important to properly interpret these
familiar statistical concepts. The null hypothesis significance test
(NHST) and common ES criteria are examined to illustrate the state of
the art in traditional model appraisal practices. SEM appraisal
methods are examined to illustrate an alternative approach that is
likely to have an increasing influence in the future.

Significance Tests

Significance tests are the most common tool for model appraisal
in behavioral research. Significance tests can be diffuse (omnibus) or
focused. Diffuse significance tests involve multiple degrees of
freedom (dfs); focused tests involve a single degree of freedom
(Rosenthal & Rosnow, 1984) . For example, tests for main effects and
interactions in ANOVA often involve df > 1. Planned or post hoc
contrasts decompose the omnibus test into a set of component (df = 1)
tests.

Significance test procedures can involve an NHST or a strong
significance test (SST) . NHST procedures compare the sample estimate
of a parameter value to a hypothetical value of zero. SST computations
compare sample estimates to values derived from theory or prior
research. SST will include zero values when appropriate, but such
cases are expected to be rare {(Meehl, 1978; Schmidt, 1996). Thus, the
hypothesized parameter value(s) in SST ordinarily will be nonzero
values.

The focused-diffuse distinction is less important for the present
discussion than NHST-SST distinction. The major issue associated with
the difference between focused and diffuse tests involves the number
of significance tests performed. Diffuse tests apply a single test to
evaluate a set of parameters. Focused requires multiple significance
tests (i.e., one for each degree of freedom). The process of
performing multiple significance tests increases the likelihood that
at least one result will be significant by chance. Special procedures
to deal with this problem can be used to control the inflated risk of
mistaking chance for a true effect (Keselman, Cribbie, & Holland,
1999; Seaman, Levin, & Serlin, 1991). vVarious methods for planned and
post hoc comparison in ANOVA are examples of how to deal with this
problem (Winer, Brown, & Michels, 1991). The following discussion
assumes that appropriate procedures will be used to control for
multiple significance tests.

NHST and SST have very different implications for modeling.
Roughly speaking, NHST evaluates whether an attempt to construct a
model is worthwhile. SsT determines whether an existing model (i.e.,
set of parameters) should be retained. NHST and SST procedures are
complementary when viewed as elements of an overall model development
process. Tnitially, NHST is employed with the null hypothesis as a
Straw man model (Krantz, 1999). If the null hypotheszis cannot be
rejected, zero is a reasonable estimate for the parameter(s) being
evaluated. A model in which all parameters are zero will be of
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substantive interest only insofar as it rules out some possible
relationships. Thus, NHST is most likely to be performed in
connection with attempts to develop initial estimates of parameters
that are believed to have nonzero values. As further research is
conducted and evidence accumulates, refined estimates of model
barameters can be developed based on the cumulative research evidence.
SST can be applied when the model 1s represented by a set of nonzero
parameter estimate(s) based on prior work or theory. In this
situation, the question is whether the sample estimates of the
barameters are close to the predicted values. Using the traditional p
< .05 statistical significance criterion, the desirable NHST outcome
is p < .05. This outcome Justifies tentatively adding the parameter (s)
being evaluated to the behavioral model. The desirable SST outcome is
Db > .05. This outcome would justify retaining the existing model.

NHST Procedures. NHST is the most common metric for model
appraisal (Finch, Cumming, & Thomason, 2001; Kirk, 1996; Vacha-Haase &
Ness, 1999). Meehl (1978) has argued that reliance on NHST is one
reason for the stunted growth of behavioral models. His viewpoint isg a
widely quoted anchor point in an ongoing debate. Arguments in the
debate range from recommending that NHST be banned entirely to arguing
that NHST would have to be invented if it did not already exist

(Abelson, 1997). The American Psychologist recently published a
negative view (Cohen, 1994), followed by a rebuttal (Hagen, 1997), and
an attempt at synthesis (Kreuger, 2001). The scope of the debate isg

broadened by examining topics such as the actual use of NHST in
practice (Nelson, Rosenthal, & Rosnow, 1986) and the historical
development of NHST (Cowles & Davig, 1982; Smith, Best, Cylke, &
Stubbs, 2000). The full range of topics considered in the NHST debate
can be found in Harlow, Mulaik, and Steiger (1997). A comparison
between this and an earlier collection by Morrison and Henkel (1970)
provides insight into the rate at which the debate has progressed.
Nickerson (2000) also provides a brief comprehensive summary of the
current status of the debate.

NHST can be a trap for the unwary. Cohen (1994, p. 997)
highlighted this problem when he wrote: *What’'s wrong with NHST?
Well, among many other things, it does not tell us what we want to
know ..” (italics added) . Researchers collect data for the purpose of
testing models. NHST results can lead to erroneous inferences about
the status of a model for any of the following reasons:

®* The NHST p value is not the probability that the model is
correct. Instead, p is the probability of the data if the null
hypothesis is correct. The critical point here is that the p
value must be combined with other information to determine how
the data relate to the probability of the model . Cortina and
Dunlap (1997), Dixon and O’Reilly (1999), Krueger (2001), and
Trafimow (2000) discuss Bayes’s theorem as the appropriate
method for using p as one element in estimating the
probability that the model is correct. Howard, Maxwell, and
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Fleming (2000) compare the Bayesian and NHST approaches. For
the present purposes, it is sufficient to note that the
relationship is not straightforward. For example, the null
hypothesis can be rejected when the data actually increase the
probability that this hypothesis is true (Lindley, 1957).

®* The complement of the NHST p value (i.e., 1 - p) derived from
a single study is not the likelihood that the alternative
model is correct. The complement is not the likelihood that
the results will replicate. BRoth interpretations are wrong,
although NHST p values can be a rough guide to the likelihood
of replication (Greenwald, Gonzalez, Harris, & Guthrie, 1996).

®* Rejecting the null hypothesis in each of several studies does
not mean their results were replicated. If the sign of the
statistic used in the test was the same in each study, the
results replicate qualitatively. This qualitative Criterion is
accepted as evidence of replication under NHST (Greenwald et
al., 1996). However, a quantitative replication criterion
could produce a different conclusion. For example, suppose
three studies were conducted with N = 200 in each study.
Suppose the correlations in the studies were r = .15, r = .50,
and r = .90. The null hypothesis would be rejected in each
study. However, most researchers would be reluctant to treat
the results as equivalent because every palrwise difference
would be statistically significant.

¢ NHST does not indicate whether a particular parameter is large
enough to be important in practical or theoretical terms. The
conceptual definition “Significance = Effect Size * Sample
Size” (Rosenthal & Rosnow, 1984) shows why. Even trivial
deviations from zero will be statistically significant given a
large enough sample. Conversely, effects that are large enough
to have practical and/or theoretical value will be
statistically nonsignificant if the sample is small enough.

These interpretive pitfalls can be avoided by careful use of NHST.
Harlow (1997) provides a succinct summary of options that are
available to minimize the risk of misinterpretation. However, it is
not easy to maintain perfection in this regard. Cohen (1994) 1lists an
impressive array of established statistical experts who have erred at
one time or another.

The list of things that NHST dees nct tell us is impressive, so
why take the risk? The answor lies in the fact that NHOT really is
necessary in some instances. NHST is appropriate for evaluating
whether findings are due to chance (Mulaik, Raju, & Harshman, 1997).
NHST also is informative in answering some specific questions that
involve dichotomous alternatives (Abelson, 1997; Greenwald et al.,
1996; Hagen, 1997; Mulaik et al., 1997; wWainer, 1999) . These
applications of NHST support the argument that this procedure is a
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necessary if sometimes misleading tool for model evaluation (Abelson,
1997).

The recommended Strategy for minimizing the negative effects of
NHST is to report results more completely (Meehl, 1997) . A confidence
interval (CI) is the most common recommended alternative to NHST for
this purpose. This interval provides a point estimate of ES and
indicates the precision of the estimate (Cumming & Finch, 2001;
Greenwald et al., 1996; Wilkinson & the Task Force on Statistical
Inference, 1999). (CIs are directly linked to the familiar NHST
procedures and support the development of cumulative parameter
estimates as a research domain matures (Cumming & Finch, 2001) .
Methods of computing confidence intervals are available for all common
ES indicators (Algina & Moulder, 2001; Cumming & Finch, 2001; Fan &
Thompson, 2001; Fidler & Thompson, 2001; Mendoza & Stafford, 2001;
Smithson, 2001). At a minimum, investigators should report the exact
test statistic or exact significance level along with sample size
(e.g., t =2.88, 32 df). This information generally is sufficient to
permit computations of ES and CI. The ES component of the CI leads the
discussion directly to the second criterion for evaluating models.

SST Procedures. SST avoids some NHST problems by replacing the
NHST assumption that ES = 0 with ES = k, where k is a parameter value
that differs from zero. While k could be based on theory, behavioral
theories seldom are sufficiently developed to permit this. Parameter
values are more likely to be derived from prior research. SST,
therefore, can be viewed as a consistency test. Are the current data
consistent with the evidence from prior studies? If p > .05, this
gquestion can be answered atfirmatively. If the sample were large, the
range of parameter values that would vield an affirmative answer would
be small. If the model is not correct, observed values that were
close enough to the predicted values to fall in the range of
acceptable values would be “a darned strange coincidence” (Salmon,
1984). As a result, the ssT would be a risky test of consistency
between the present data and either prior research or theory because
most parameter values would be inconsistent with the model prediction
(Meehl, 1990a). A coincidence that is consistent with a risky
prediction provides strong support for the model being tested.

SST and NHST are formally similar. Both tests estimate the
probability that the Study results would have been obtained under a
particular model. NHST asserts that the parameters in the model are
equal to zero. SST specifies non-zero values. This difference is the
reason that NHST and SST are complementary in the context of overall
research programs. SST cannot be used without knowledge of the
barameter values, so this procedure is not feasible in the initial

research provides non-zero values for the parameter estimates. At this
point, NHST would be counterproductive because it ignores prior
findings. Thus, replacing NHST with SST implies movement along the
continuum from exploratory to confirmatory models. Movement toward
SST is desirable because it implies stronger theory based on
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cumulative empirical evidence. Movement toward SST should facilitate
the development of reliable knowledge. Meta-analysis provides methods
of accumulating results across studies (Glass, 1976; Glass, McGaw, &
Smith, 1981). This analvytic methodology is widely used at present, but
meta-analytic results do not appear to be used to generate SST with
any frequency.

In the final analysis, neither NHST nor SST is an entirely
satisfactory method for model evaluation. Neither procedure addresses
the fundamental question of whether the model is sufficiently accurate
to satisfy Serlin and Lapsley’s (1985) “good enough” principle. NHST
is not satisfactory because the null hypothesis can be rejected when a
model has virtually no explanatory power provided the sample is large
enough. Similarly, the existing model associated with SST can be
accepted even though it meets the criteria for a risky test. This can
happen even with a large sample if the model parameters are known with
Some accuracy but represent only a subset of the parameters required
for a complete model. The accuracy of the model is a distinct issue
that can only be addressed by considering an additional criterion,
explanatory power.

Explanatory Power

Explanatory power is how well the model accounts for variation in
the phenomena of interest. This model attribute often is evaluated in
terms of proportional reduction in error (PRE). PRE reflects the
proportional reduction in cumulative error achieved by substituting
the predictions from a fitted model for the predictions from the null
model. Common PRE indices are r? for correlation, R’ for regression,
and € for ANOVA. Draper and Smith (1998) and Cohen, Cohen, West, and
Aiken (2003) provide excellent introductions to explanatory power in
relation to applied regression procedures. Their sections on model
fit and related topics should apply to various types of GLM models.
For example, computer programs often print out ANOVA tables for
regression models and estimates of RZ. PRE measures also are available
for models with categorical dependent wvariables (Hildebrand, Laing, &
Rosenthal, 1977).

Explanatory power is linked to ES. The linkage makes it possible
Lo express explanatory power in terms of either strength of :
association (e.g., R?, €?) or magnitude of ES (e.g., r, Cohen’s d) .
Both association and magnitude indices are readily available for
common analysis procedures (e.g., regression, ANOVA, cf., Cohen, 1988;
Hedges & Olkin, 1985; Kirk, 1996) .wWhen reporting ES or PRE, several
points should be kept in mind:

®* Dichotomous decision rules are counterproductive. The limitations
of this approach are evident from the history of NHST. NHST
procedures were developed in the context of the need to choose
between alternative courses of action (Cowles & Davis, 1982) .
Significance standards were rule-of-thumb criteria established by
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well-informed individuals who recognized a need to make a vyes-no
decision in the presence of uncertainty. The extensive
literature on NHST demonstrates the problems that arose when this
procedure subsequently was codified and ritualized (e.g., Meehl,
1978, 1990b). Flexible reasoning will be more productive than
rigid application of a dichotomous decision-making scheme. Thus,
Cohen’s (1988) ES guidelines should be applied in the spirit in
which they were offered. Transforming these guidelines into rigid
rules for dichotomous decisions would be a serious mistake.

Small ESs can be important. In applied research, small effects
Can be important when they involve repetitive events that yield
large cumulative trends (Abelson, 1985) or when the outcome being
predicted is very important (e.g., heart attack mortality; Rosnow
& Rosenthal, 1989). In theoretical studies, small ESs can be
important when there is a small difference between stimuli that
produce an effect and/or when the dependent variable is difficult
to influence (Prentice & Miller, 1992).

Capitalization on chance inflates sample estimates of explanatory
power. When parameters are estimated using data from a single
sample, the analysis procedures are designed to maximize the fit
of the model to the data. The maximization process capitalizes
on chance elements of the data. 2s a result, the model will not
fit the data from a new sample as well as it did the data from
the original sample. The loss of predictive power is known as
shrinkage. Methods of adjusting for shrinkage have been developed
Lo obtain more realistic estimates of the predictive power that
can be expected when a model is applied to a new data set. For
example, the shrunken R? for regression and the w?, a comparable
statistic for ANOVA (Hays, 1963), allow for thig inflation.
Joreskog and Sorbom’s (1981) adjusted GFI is an SEM analogue of
the shrunken RZ. Raju, Bilgic, Edward, and Fleer (1997, 1999)
reviewed and simulated the performance of a number of equations
for shrunken R?. In their simulation, shrinkage increased as the
predictive power of the model decreased, as the sample size
decreased, and/or as the number of predictors in the model
increased. These model components had more effect on shrinkage
than did the choice between alternative shrinkage equations.
These findings should generalize to other GLM analyses (e.g.,
ANOVA models). Thus, investigators should be especially concerned
about shrinkage when a model with many predictors yields moderate
to low predictive power in a small sample. Browne (2000) provided
a general discussion of shrinkage and the available methods of
Aadivsting for this capitalization on chance .

The choice of ES should be appropriate to the modeling objective.
For example, in regression, the semipartial correlation expresses
PRE relative to the overall variance in the dependent variable.
Significance tests are based on the partial correlation, a
statistic that relates incremental PRE to the residual variance
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(cf., Cohen & Cohen, 1983, pp. 85-110). When the overall model
accounts for a large proportion of the criterion variance, the
semipartial correlation can be small even though the partial
correlation is large. The partial correlation is the basis for
NHST. This statistic relates the incremental variance accounted
for by adding the barameter to the residual variance for the
overall model. The semipartial correlation expresses the
incremental variance relative to the overall variance of the
dependent variable. For example, if a model accounted for 90% of
the variance in a dependent variable, a barameter that accounted
for 10% of the residual variance would only account for 1% of the
total variance. The model is being constructed to explain the
overall variance, not the residual variance. The Semipartial
correlation indicates the explanatory power of the model in this
context, and so would be more appropriate than the partial
correlation for most modeling situations.

Interpretation is a problem for model appraisals based on
traditional indices for explanatory power. Problems arise because ES
and PRE indices are set in a statistical frame of reference. In each
case, raw data are transformed into standardized data. The advantage
of transforming the data is that ES values can be compared even when
different variables in the model have different raw score metrics. For
example, analysis might yield an ES represented by a point biserial
correlation between experimental status (i.e., experimental or control
group) of ry = .30. The associated PRE statistic would describe the
relationship as accounting for 9% of the variance in the dependent
variable. Cohen’s (1988) criteria would classify the association as
moderate in size. These statements could be applied whether the
experiment was a training program designed to increase push-up scores,
a clinical intervention to reduce depression, or a new method of
teaching designed to improve algebra test scores.

The disadvantage of ES-based model appraisal derives from the
transformation of the raw data. The standardization must be reversed
to express ES in behavioral units relevant to the original research
question. Commentaries that contrast statistical significance with
practical or theoretical significance highlight this necessity (e.g.,
Jacobson, Roberts, Berns, & McGlinchey, 1999; Thompson, 2002) .
Solutions include the binomial effect size display (Rosenthal & Rubin,
1979), the common language ES (CL; McGraw & Wong, 1992), the receiver
operating characteristic curve (Lett, Hanley, & Smith, 1995; Swets,
1988), and the number needed to treat (Ebrahim, 2003). For example, CL
is the probability that an observation selected randomly from an
experimental group will perform better than an observation selected
randomly from a control group. Thus, CL = 75% means thar a comparison
between the two observations will favor the experimental group 75% of
the time. This result has clear intuitive meaning. Also, the
difference between CI, = 75% and CL = 53% ig immediately meaningful .
The other indices mentioned here provide comparable translations of ES
into the behavior(s) of interest. The use of these indices should
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allow for uncertainty in the ES estimates. This allowance could take
the form of CIs expressed in a CL ES metric.

Consistent reporting of ES would support the growth of reliable
knowledge in behavioral research. Improvement in this aspect of
statistical practice would ensure that enough information was reported
Lo support meta-analysis of the Ccumulative body of evidence in a
field. Meta-analysis can formally model methodological and substantive
influences on ES. Several meta-analytic methods developed for this
purpose (Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Rosenthal,
1984) produce similar results (Schmidt & Hunter, 1998).

Meta-analysis generally is used to evaluate correlations or other
ES measures that can be converted to correlations (Cooper & Hedges,
1994; Hedges & Olkin, 1985) . However, meta-analytic methods can be
extended to parameters such as standard deviations and standard errors
of estimate (SEEs) (Raudenbush & Bryk, 2002, chapter 7). These
extensions should receive increased attention in future meta-analyses.
The variables that predict ES in a meta-analysis are analogous to
moderators in traditional moderator analysis. Restriction of range and
other factors can produce the appearance that a moderator effect ig
present when it really is not (Zedeck, 1971). Meta-analysis, too, can
be influenced by these factors. Extending meta-analysis to cover
sampling variance reduces the risk of incorrect inferences. With this
extension, meta-analysis can provide parameter estimates that are
suitable for SST. These estimates would move behavioral research
toward risky hypothesis tests that could provide the evidence needed
to make strong claims for a model.

Full realization of the potential value of meta-analysis may be
hampered by the appearance that meta-analysis is too complex for the
average researcher. This appearance is misleading because the basic
analysis procedures are no different than those found in primary data
analysis (Rosenthal & DiMatteo, 2001). Special issues that are unigque
to meta-analysis are described in Cooper & Hedges (1994) .
Generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972)
provides a framework for thinking about the combinations of
methodological and substantive factors that may have to be combined to
produce complete models to account for variations in ES across
studies.

The Future of NHST and ES

The preceding comments identify opportunities to improve on
current practices by reducing the emphasis on NHST and increasing the
emphasis on ES and PRE indices of model effectiveness. Consistent
reporting of CI would Support movement toward SST by facilitating
nmeta-analytic summaries that would provide the parameter estimates
needed for SST. That shift will provide the basis for stronger models
based on cumulative evidence, rather than on a study-by-study analysis
coupled with discussions that provide qualitative comparisons to prior
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findings. The development of models based on formal analysis of the
Cumulative empirical evidence should foster consensus on the evidence.

Movement toward the use of CL ES metrics is another factor that
should foster consensus. Developments in this area would promote a
better understanding of what the set of parameters in a model mean in
terms of actual behaviors that are the true focus of model building.
The gap between abstract statistical indices and actual behavior is
clear and must be addressed in practice. Consensus on the choice
between alternative models will not result directly from these changes
in practice, but it 1is reasonable to hope that the bases for arguments
about different models will be communicated to practitioners more
clearly.

ES will be reported more consistently in the future. Melton’s
(1962) editorial on significance tests 1is commonly cited as evidence
of the pressures that made NHST an important, sometimes critical,
requirement for publication. Similar pressures are mounting for ES
indicators that are reported sporadically at present (Finch et al.,
2001; Kirk, 1996; Vacha-Haase & Ness, 1999). A growing number of
journals have editorial policies that require additional information
(Fidler & Thompson, 2001) . Previous experience suggests that change
may be slow (cf., Finch et al., 2001), but the increasing frequency of
meta-analyses should stimulate more consistent reporting. The work of
researchers who do not report ES — or who fail to provide enough
information to compute ES — will ultimately be excluded from the
cumulative body of evidence.

Two trends should foster improved inference about the adequacy
and utility of models. Interpretation may be improved by combining
progress toward clinical ES measures with the recommended use of CI.
These approaches could be combined to present findings graphically in
units that have direct clinical or applied meaning and utility.
Graphical presentation that fosters better communication of research
findings is one index of the scientific maturation of a field (Smith,
Best, Stubbs, Archibald, & Roberson-Nay, 2002). Both trends should
decrease the need for practitioners to apply arbitrary statistical
standards when making Jjudgments about the behavioral implications of
models.

The increased use of Bayesian statistics will also support
improved inference. Elements of Bayesian reasoning already are present
in some current analysis methods (e.g., HIM; cf. Raudenbush & Brvk,
2002). The frequency with which Bayesian reasoning is discussed in
the NHST debate may increase tamiliarity with this approach to
inference. The problem of how to specify prior probabilities is the
primary barrier to wider use of Bayesian models. Recent summaries of
the average ES from multiple meta-analyses (Lipsey & Wilson, 1993;
Meyer et al., 2001) mAay provide some leverage for this problem. These
summaries provide an empirically grounded a priori estimate of the
prior distribution of ES for behavioral research. Stein’s paradox
(Efron & Morris, 1977) can be applied to invoke this distribution as a
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proxy for the true priors in new research domains. Thinking along
these lines may replace NHST with more appropriate inferential
thinking.

One undercurrent in the NHST debate merits special mention to
close this topic. Data analysis should not be a ritual. Data analysis
is only one element in the overall process of empirically testing
hypotheses and models. Existing theory and prior research findings
should guide the process at all times. Judgment is needed at each
step in the research process to produce designs and analyses that
correctly link data to research questions. Researchers routinely use
Jjudgment in the complex activities of formulating hypotheses and
developing research designs (Kirk, 1996). The best overall statement
regarding NHST at present, therefore, appears to be this: Judgment
should not be suspended during the data analysis phase of research.

SEM Appraisal Methods

Traditional model evaluation methods will persist until a
reasonable alternative is available. SEM practices are considered in
some detail here because they are the product of a quarter century of
developing an approach to model evaluation that minimizes reliance on
significance testing. Also, the increasing use of SEM in behavioral
research demonstrates the attractiveness of these methods.
Researchers should be motivated to learn new model appraisal
techniques in the process of acquiring familiarity with this new
analytic methodology.

General Appraisal Processes

SEM appraisals involve three general criteria. SgSEM analogues of
significance tests and explanatory power are coupled with indicators
of misfit between models and data. Significance tests play a minor
role in SEM appraisals. 1In this context, the confounding of ES and
sample size has been an explicit concern for 20 years (Hoelter, 1983).
Recognition of this fact has limited the use of Significance tests
primarily to the assessment of individual parameters within models.
Parameter evaluation typically employs Joreskog and Sorbom’s (1981) ¢t
2 2.00 criterion. This criterion approximates the Db < .05 standard
commonly used in NHST. Thig practice is primarily important in
deciding model details rather than in evaluating the model as a whole.
Earlier comments on NHST and SST apply to this element of SEM
appraisal and will not be repeated here.

SEM programs report more than 20 GFIs that describe the overall fit
between the model and the data. Classification schemes based on
conceptual and/or computational similarity have been developed (e.g.,
Arbuckle & Wothke, 1999; Tanaka, 1993) . However, simulation studies
have shown that different GFIs are correlated when compared across
samples. The empirical pattern of associations suggests two general
GFI categories (Hu & Bentler, 1998). One category contains SEM
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analogues of PRE indices. Cross-validation indices fall within this
category. The second GFI Category consists of measures that are
analogous to SEE in regression analyses. The empirical clustering of
GFIs is one reason for current recommendations that investigators
report more than one GFI when evaluating SEMs. The recommended
practice is to report at least one index from the clusters analogous
to PRE and SEE (e.g., Bentler & Dudgeon, 1996; McDonald & Ho, 2002).

There is not yet a strong consensus on the best PRE measure for
SEM. The RMSEA (Arbuckle & Wothke, 1999) has been recommended
(Bentler & Dudgeon, 1996: Hu & Bentler, 1998). RMSEA has a population
interpretation, so CIs can be computed. The population interpretation
Of RMSEA can be used to test hypotheses about the fit of the model.
SEM programs often report a "p(close)” test that compares the observed
RMSEA with a null hypothesis of RMSEA = .05. Fabrigar et al.’s (1999)
recent recommendation that RMSEA should be used in the evaluation of
EFA may indicate movement toward a consensus.

The standardized root mean square (SRMR) is the recommended SEM
analogue of SEE (Bentler & Dudgeon, 1996; Hu & Bentler, 1998;
MacCallum & Austin, 2000). SRMR reflects the standardized difference
between observed covariances and the model estimates of those
covariances.

Simulation studies indicate that RMSEA and SRMR provide different
types of information about models. In these simulations the
experimenter defines the true population model. Models with known
errors (i.e., omitted parameters, added parameters) then are fitted to
the data. GFI measures are evaluated by determining how sensitive
they are to the errors. In such simulations, SRMR has been sensitive
to errors in the path model component of SEMs in simulations (Hu &
Bentler, 1998). RMSEA has been sensitive to errors in the measurement
model (Fan, Thompson, & Wang, 1999; Hu & Bentler, 1998). Neither the
numpber of factors nor the number of indicator variables affects RMSEA
when the model is correctly specified (Cheung & Rensvold, 2002).

Users should be aware that RMSEA and SRMR can yield different
conclusions about a model. This is not surprising given that these
indices provide different types of information. Browne, MacCallum,
Kim, Andersen, and Glaser (2002) describe the conditions that produce
this disparity. When conflicts occur, trade-offs between these
criteria may be required. For example, the available simulation
evidence might be used as a guide. If so, SRMR would be given greater
weight when evaluating path models. RMSE2A would be given greater
weight when evaluating measurement modeis. This approach to weighting
the criteria assumes that models must lead to the adoption of a single
model. One alternative would be to treat the criteria as equivalent
and conclude that the study did not make it prossible to choose between
the model with the smallest RMSEA and the model with the smallest
SEMR. Retaining more than one model may be preferable to premature
adoption of a single alternative as “the” model.
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SEM Appraisal Issues

As mentioned at the beginning of this section, SEM appraisal
practices raise issues that are not always evident in other types of
analysis. As a consequence, SEM appraisal does not begin and end with
the examination of one or two statistical indicators for model
adequacy. Satisfactory assessment of a model must also consider other
issues. Some important general topics in model evaluation are
examined here under the heading of appraisal issues.

Steps in Modeling. One important model appraisal issue is
highlighted by recommendations that measurement models be defined and
evaluated before estimating path models (Anderson & Gerbing, 1988).
The initial proposal of this two-step procedure stimulated debate on
the strengths and weaknesses of the approach (Anderson & Gerbing,
1992; Fornell & vi, 1992). McDonald and Ho (2002) raised the issue
again and demonstrated that the fit of the two models can be quite
different. That demonstration should spark renewed interest in the
topic.

Good overall fit for a model means that it reproduces at least
some parts of the data well. However, overall fit can conceal
significant misfit in specific elements of the model when a few large
errors are averaged with a number of much smaller errors. If the
large errors are scattered throughout the covariance or correlation
being analyzed, there may be no problem. However, there is no
guarantee that the errors will not be focused in specific areas of the
model. Inaccuracies in the measurement model do not have the same
implications for theory as do inaccuracies in the path model. A weak
measurement model means that the current model does not satisfy one of
several conditions that must be met to obtain meaningful tests of
substantive hypotheses (Meehl, 1990a). The hypothesized relationship
still might be demonstrated by refining the measurements or by
substituting other measurement procedures if available. In fact,
demonstrating that the same associations and lawful relationships
between theoretical constructs can be derived using different
measurement models is one hallmark of reliable knowledge (Ziman,
1978). This point is not always appreciated in behavioral research.
Katzko (2002) argues that research paradigms often come to be equated
with the theoretical constructs they are intended to measure. A
general construct thereby is reduced to a specific set of operational
definitions, including a specific ieasurement model. When different
researchers develop different paradigms to study the same construct,
each paradigm can become the center of a research program. Different
programs then proceed in parallel rather chan being directly compared.
The collected set of paradigms then may be combined to represent the
theoretical construct as a syndrome. Separate measurement and path
models would help to clarify the role of measurement paradigms: Do
different paradigms produce equivalent estimates of the relationships
between theoretical constructs? If so, progress is being made toward
reliable knowledge. 1In this context, measurement methods are
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auxiliary models that must be reasonably accurate in order to test
theoretical assertions (Meehl, 199%0a).

A two-step evaluation is implicit in current practices outside
the SEM realm. Regression and ANOVA methods typically define
predictor and criterion measures prior to analysis. Consideration of
the measurement model may be limited to reference to previous studies
that established the measurement adequacy of the scales. Direct
demonstration of measurement adequacy in the present sample is not
ordinarily undertaken. More consistent attention to this issue would
reduce the risk of inappropriate generalization. This risk is a
neglected dilemma for behavioral researchers (Blalock, 1982). Jeglect
renders the dilemma invisible, but does not eliminate it.

Considered in this context, any process of principled argument
must focus on measurement issues at some point. Routine use of a two-
step analysis procedure can organize the empirical evidence bearing on
this part of the argument. For this reason, it seems likely that
practice ultimately will move in the direction of Separating
measurement model assessments (i.e., scale construction) from path
model assessments (i.e., tests of substantive hypotheses). A review
of Anderson and Gerbing’s (1988) arguments, subsequent debate
(Anderson & Gerbing, 1992; Fornell & vi, 1992), and McDonald and Ho'’s
(2002) recent exposition of the issues will provide researchers with a
firm basis for determining how critical this issue is to any
particular research problem.

Effects of Measurement Error. SEM evaluations also direct
attention to the effects of Measurement error. SEM programs provide R?
values for latent traits that are dependent variables in the path
model. The R? values are likely to be stronger than those found in
ordinary regression. This difference can be attributed to removing
the effects of measurement error (Bollen, 1989). 1In effect, SEM
includes corrections for the attenuation of associations that result
from measurement error (cf., Nunnally & Bernstein, 1994). The
resulting estimates may be closer to true population values than are
the attenuated estimates, but this apparent benefit should be viewed
with caution (Bedeian, Day, & Kelloway, 1997). This potential
advantage of SEM analyses is not always evident because R? for the path
model does not ordinarily receive as much attention as it would if the
model had been created using regression techniques. These statistics
ordinarily play little part in SEM model evaluations. For example,
the change in RrR? resulting from dropping a parameter ordinarily is not
a consideration. The potential value of greater attention to these
Statistics is uncertain because the R? indicators of strength of
association between theoretical constructs often are not reported even
when they should be (Boomsma, 2000; McDonald & Ho, 2002). More
consistent attention to this information in the future will provide a
better basis for Aassessing the utility of the path model R’ as an SEM
Criterion.
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Search for Areas of Misfit. The appraisal of model misfit should
include a search for atypical data points. In some cases, a few
unusual observations, known as outlier and/or influential data points,
heavily influence model fit. Roughly speaking, an outlier data point
is an observation with an exceptionally large residual. The
exceptional residual inflates the cumulative error variance of the
model. The inflation means the model’s explanatory power/goodness of
fit is underestimated. Influential data points markedly alter
parameter estimates in the model. For example, an influential data
point is one that changes the regression slopes in multiple
regression. The influential data point is not necessarily an outlier
because distorted parameter values make the predictions reasonably
accurate in some cases. However, the model parameters are less
accurate than they could be for other data points. The overall
accuracy of the model is likely to decline. Both outlier and
influential data points can lead to models that do not accurately
describe the population under investigation. In the context of
behavioral modeling, the resulting model may lead to mistaken
conclusions about the causes and consequences of the behavior of
interest.

Outlier and influential data points are not fatal problems in
modeling. Diagnostic procedures are available to identify influential
and outlier cases (cf., Belsley, Kuh, & Welsch, 1980; Stevens, 1984).
Chatterjee and Yilmaz (1992) review the use of these methods and
provide an additional example of their application. These methods are
available in many regression programs, but are not generally available
in SEM or HLM programs. In those cases, preliminary regression
analyses can help to identify exceptional data points. The sources
that describe the bases for the diagnostic indicators provide general
guidelines for interpreting the statistics. One limitation of the
available indicators is that they may be insensitive to situations in
which groups of data points affect the model (Belsley et al., 1980).
Robust regression produces accurate models even when the proportion of
contaminating data points is large (Rousseeuw & Leroy, 1987). This
method should be considered for data screening when it is available,
but the technique is not widely available at present. Draper and
Smith (1998) describe an iterative approach that addresses this
problem without the need for specialized analysis packages. The
prediction of sum of squares (PRESS) approach is potentially time-
consuming because it is iterative, but the effort may well be
worthwhile.

Outlier and influential data points may even have positive
effects in modeling. These exceptional data points can indicate that
the data include cases that represent two or more distinct populations
(Barnett & Lewis, 1994). 1If so, separate models can be constructed
for each population once appropriate indicators of group membership
have been identified.

Justification for Model Amendments. The model defined at the
outset of a research project seldom is wholly satisfactory. The
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appraisal typically identifies weaknesses that cannot be attributed
entirely to chance or to exceptional data points. Investigators then
must choose between amending the model and accepting it as “good
enough.”

The “good enough” choice should not be neglected (Serlin &
Lapsley, 1985). This option is more likely to be considered in SEM
modeling than in other areas. SEM practices set stopping rules in
terms of GFI criteria. The most common cutoff for acceptable fit is
GFI 2 .900 (Bentler & Bonett, 1980), but higher standards (i.e., GFI >
.950) have been suggested recently (Hu & Bentler, 1999). In either
case, less that perfect fit is consideread acceptable. In practice,
the standards for accepting a model as adequate are somewhat lower.
Optimistic interpretation of fit indices is common (Bentler & Dudgeon,
1996). Care must be taken to ensure that the criterion for “good
enough” is not set so low that it impedes the search for improvements
in mediocre existing models.

Post hoc model modifications take two forms. The most common is
the addition of parameters to improve the predictive accuracy of the
model. Additions are philosophically defensible (Meehl, 1990a), but
the modification process must be sensitive Lo the risk of capitalizing
on chance. For example, in SEM, a search through all the constrained
parameters is likely to capitalize on chance {(MacCallum, Roznowski, &
Necowitz, 1992). The same problem arises in regression (Thompson,
1995). Decisions regarding model modifications should be sensitive to
the effects of chance. The basic approach is to set a more extreme
significance standard (e.g., p < .01 rather than p < .05). Methods of
testing post hoc contrasts in ANOVA may be the most familiar example
of this approach (Winer et al., 1991). Keselman et al. (1999) and
Seaman et al. (1991) compare several approaches that could be used in
regression. Green, Thompson, and Poirer (2001) demonstrate the
utility of this approach in SEM.

Model amendment should not rely solely on significance tests.
Modifications should also consider ES and theory. Kaplan (1990a,
1990b) proposed combining ES and significance (i.e., modification
index) to determine when to add parameters to SEM. Experts who
commented on this proposal noted that parameters should not be added
without sound theoretical Justification (Bollen, 1990; Steiger, 1990).
The rationale for that assertion applies to all types of models.

Models can also be modified by deleting parameters. Deletion
fixes a parameter that had a non-zero value in the original model at
zero in the revised model. In SEM, parameters with t < 2.00 often are
deleted (Joreskog & Sorbom, 1981). Parameter deletion procedures can
be implemented easily in regression. Backward stepwise regression
performs these modifications automatically by removing the predictor
with the least predictive value and then estimating a new regression
with the remaining variables. This process is repeated until all
remaining parameters are acceptable (e.g., p < .05). Backward
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stepwise regression provides an analogous model amendment procedure
for regression models.

Deletions reduce the number of parameters in a model. The result
is greater parsimony (i.e., a model with fewer parameters; cf. Popper,
1959). However, the search for simplicity should apply the same
principles used when deciding whether to add parameters. The effect
on predictive power and the implications for theory should be
considered. The effects of chance also should be considered. When
examining a set of parameters, one or more of the parameters can
appear to be no greater than zero by chance. Allowances should be
made for this risk just as one would allow for chance effects when
adding a parameter. This problem does not appear to have been
addressed in the literature, but it is likely that the methods used to
avoid improper addition can be adapted to avoid incorrect deletions.

The preceding sketch of model modifications points to two general
principles. First, multiple criteria should be used when deciding
whether to amend a model. The criteria include statistical
significance, ES, and theory. Theory must be emphasized to avoid
letting the statistical tail wag the theoretical dog. Second, the
same criteria apply to additions and deletions from the model.

However, significance tests should focus on Type II error (vs. Type I
error) when considering deletions.

Justifying Claims for Model Generality. Fitting a model to data
yields a set of equations. The parameter wvalues in the equations
optimize the fit of the model in the specific data set. Optimization
is influenced by the effects of chance on the pattern of covariation
in the data. Optimization also may be affected by the fact that the
data were sampled from a specific population. Generalization tests
explore the effects of chance and population differences on model
structure.

Generalization is always an issue in behavioral research
(Blalock, 1982). 1In military research, one might ask whether the same
model applies to men and women, to different ethnic groups, to
different occupations, and/or to different military services. For
example, does general intelligence (i.e., psychometric ‘g’) predict
job performance equally well for all military occupations?

Generalization encompasses cross-validation and moderator
analysis. Cross-validation applies a model developed in a sample
drawn from a particular population to a different sample from the same
population. Moderator analysis compares models across samples drawn
from different populations and/or situations. In both cases, the
question is whether the model varies substantially from one sample to
another.

Browne (2000) provides an overview of cross-validation issues for

different types of analysis. His review describes model development
as consisting of calibration and validation phases. However, current
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guidelines use the term “validity” to refer to the appropriateness of
the interpretations of test scores (APA, 1985). By extension, model
validity would refer to the appropriateness of the interpretations of
model parameters. This aspect of modeling can be realigned by
characterizing the examination of sources of parameter variation as
generalization tests. Instead of linking parameter variation to model
interpretation (i.e., validity), the realignment emphasizes the
legitimate scope of application of the model. This shift highlights
the affinity between parameter variation and Cronbach et al.’s (1972)
generalizability approach to test scores.

The effects of optimizing the fit of the model to a single sample
can be estimated directly from results obtained in fitting the initial
model. The shrunken R’ printed out in many regression and GLM programs
is the most familiar example of this approach. A number of indices to
estimate the population accuracy of a model have been developed for
regression (Raju, Bilgic, Edward, & Fleer, 1997). Users should be
aware that some formulae estimate the population multiple correlation
for the model; other formulae indicate the R? that would be expected
when applying the model to a new sample of data from that population.
Sampling variation specific to the new sample would affect performance
in the latter case. Raju, Bilgic, Edward, and Fleer (1999) conducted
a simulation to compare a number of widely used formulae. The
formulae performed well when the sample size was at least moderately
large (i.e., N 2 100 or so). The expected cross-validation index
(ECVI; Browne & Cudeck, 1989) is the analogous SEM index.

Equivalent Models. Principled argument is most productive when
it compares competing models. Unfortunately, model comparison is not
the norm in behavioral research (Katzko, 2002). As a result,
behavioral modeling is affected by confirmation bias and insensitivity
to the existence of equivalent models.

Confirmation bias is a prejudice in favor of the model under

evaluation (MacCallum & Austin, 2000). Symptoms of bias include
overly positive evaluations of model fit and a ".. routine reluctance
to consider alternative explanations of the data" (p. 213). MacCallum

and Austin (2000) recommend using Strategies that provide for
examination of alternative models, including a priori specification of
multiple models. Based on a review of recent modeling literature,

these authors suggest that this approach 1is followed about half of the
time.

A search for alternative models is likely to identify equivalent
models. Two models are equivalent if they are of equal complexity and
fit the data equally well. Models have equal complexity if they have
the same number of parameters. MacCallum, Wegener, Ueltino, and
Fabrigar (1993) found equivalent models in 46 of 53 studies they
examined. The median number of equivalent models was between 12 and
21, depending on the research area. The model differences were not
trivial from a theoretical perspective. Many alternative models had
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very different substantive interpretations than the model adopted in
the original study.

MacCallum et al.'s (1993) review understates the magnitude of the
problem. That review used methods developed by Stelzl (1986) and
extended by Lee and Hershberger (1990) to identify equivalent models.
Raykov and Penev (1999) recently showed that those approcaches are
special cases of more general conditions for model equivalence. A
search for all models that satisfy these general conditions would be
expected to increase the MacCallum et al. (1993) estimate of the
number of equivalent models per study.

Models that are literally equivalent should not be the only
concern when attempting to avoid confirmation bias. Other models may
fit the data nearly as well as the best model(s). The population
interpretations of some SEM indices (e.g., RMSEA, ECVI) make it clear
that a sample yields an estimate of the fit between the model and the
data. The true population value of the GFI is most likely to fall in
the range defined by the CI. Other models that are not literally
equivalent to the current model will have GFI values that fall within
the CI. These models should be considered along with any literally
equivalent model (s). Special attention should be given to models that
fit nearly as well even with fewer parameters than the current sample-
optimal model. A trade-off between model accuracy and the number of
parameters is the heart of the parsimony issue raised by Mulaik et al.
(1989) .

The statistical toolbox includes search methods to identify
equivalent models. Some regression programs offer an “all possible
subsets” routine. This method considers all possible combinations of
the available predictors within limits set by the researcher. For
example, models might be restricted to combining no more than five of
eight available predictors. Large numbers of models are fitted to the
data even with these restrictions. It often will be the case that
several models offer comparable explanatory power. Mallows’s (1973)
Cp is a statistic that provides a parsimony index for regression. Cp
can be used to choose between alternatives (see Draper & Smith, 1998).

The model search problem is more complex in SEM. The TETRAD
program (Glymour, Scheines, Spirtes & Kelly, 1987; Spirtes, Glymour, &
Scheines, 1993) provides tools that permit the computer to search for
alternative models. The current version of the program permits the
research to specify constraints on the search in terms of background
knowledge. The background knowledge may include information about
whether the population SEM includes latent traits or correlated
errors, the time ordering of the variables, any established causal
relationships, and causal relationships that are known not to hold in
the population (Scheines, Spirtes, Glymour, Meek, & Richardson, 1998).
Scheines et al. (1998) describe the basic rationale for their approach
and its implementation in TETRAD II in a special issue of Multivariate
Behavioral Research, which includes commentary. The initial TETRAD
approach was compared with other search tools in a special issue of
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Sociological Methods and Research (Spirtes, Scheines, & Glymour,
1990), also with attendant commentary.

The future may see tools such as TETRAD combined with
developments such as Raykov and Penev's (1999) delineation of general
conditions for identifying equivalent models. Separately or in
combination, these tools make it possible to explore the problem of
specifying equivalent models more systematically. Constructive
applications of these tools could address limitations of existing
research (Bentler & Dudgeon, 1996; MacCallum & Austin, 2000) to bring
practice in line with recent recommendations for the proper conduct
and reporting of SEMs (Boomsma, 2000; McDonald & Ho, 2002).

Causal Interpretations. Model construction, appraisal, and
amendment yield one or more sets of equations. Each set represents a
plausible alternative model. The sets of equations often are rendered
visually as path diagrams that include unidirectional arrows
representing hypothesized causal effects. Thus, the mathematical
statements are routinely given causal interpretations despite cautions
against this practice (Breckler, 1990; Roesch, 1999). These
interpretations should be sensitive to two challenges that are related
to causal inference.

Incomplete models are one source of concern. Model parameters
often are interpreted as indicating the amount of change in the
dependent variable that would be observed if a predictor were changed
by one unit. This interpretation will err if the parameter estimate
is biased. 2Any omitted variable produces bias if it has a caucsal
influence on a dependent variable and is correlated with one or more
predictors in the model (James et al., 1982). The extreme case is a
spurious relationship. A spurious relationship arises when omitted
variables are the entire basis for the association between a model
predictor and a dependent variable (Kenny, 1979). James et al. (1982)
discuss methods of reducing the risk of omitted variable bias.

Philoscophical issues remain even after omitted variable bias has
been ruled out. The general problem can be illustrated by considering
the interpretation of results from a true experiment. In this case,
it is impossible to directly demonstrate a causal effect on an
individual. This demonstration would require observing the person as
he or she would be after receiving the treatment and as he or she
would be without the treatment. Only one of these two conditions can
actually be observed, so a causal effect cannot be established for any
given individual. However, in a true experiment, it is possible to
estimate the average treatment effect. This parameter is an unbiased
estimate of the average of unit effects. Sobel (1996, 2000) discusses
these issues in greater detail. In the context of typical behavioral
modeling efforts, the advice of the American Psychological Association
Task Force on Statistical Inference should be kept in mind: “..
especially when formulating causal gquestions from non-randomized data,
the underlying assumptions needed to justify any causal conclusions
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should be carefully and explicitly argued ..” (Wilkinson & the Task
Force on Statistical Inference, 1955, p. 600).

Graph theory provides tools to address causality in connection
with observational data (Glymour et al., 1987; Pearl, 1998; Spirtes et
al., 1993). This approach represents the measurement and path models
in an SEM as directed graphs. The directed graph includes the
familiar arrows from SEMs as hypothesized causal effects. The
directed graph can have testable implications such as disappearing
partial correlations and TETRAD equations (Glymour et al., 1987).
Determining whether the implied equations hold in the data tests the
plausibility of the model. This approach cannot prove that any given
model is correct, but it can rule out some competing models (Glymour
et al., 1987).

HLM, CLDV, and LGCA Models

The SEM evaluation issues also apply to HLM, CLDV, and LGCA
models discussed previously. Recognizing this, there appear to be
opportunities to expand on current practice to obtain more complete
model assessments. For example, each approach to modeling produces
residuals that can be evaluated. However, standard analysis packages
may not include methods of identifying influential data points.
Preliminary regression analysis can serve this purpose (Raudenbush &
Bryk, 2002). The GFIs from SEM can be applied to other procedures
that vield x? values as indicators of model fit. Thus, both the PRE
and misfit indices could be applied to other areas of study. Some
movement in this direction is alrcady taking place. For example, it
has been suggested that the explanatory power of models can be
expressed in terms of the proportion of the null model x2 explained by
a substantive model (Agresti, 1996; Long, 1997). Attention also has
been given to examining residuals (Long, 1997).

Despite suggestions to the contrary, the analysis of categorical
variables currently emphasizes significance testing. The problem of
sparse data (i.e., many empty or nearly empty cells in a cross-
classification) is a contributing factor (Bartholomew & Tzamourani,
1999; Collins, Fidler, Wugalter, & Long, 1993; Langeheine, Pannekoek,
& van de Pol, 1996). These cells can bias the observed x° upward.
Collapsing cells is one means of reducing this problem, but this
approach discards some of the information in the data. Bootstrap
methods (cf., Efron, 1982) that avoid this loss are the recommended
means of generating probability distributions for choosing between
models.

Model Evaluation and MAGIC

Model evaluation is critical to principled argument. NHST
provides a weak, often misleading, basis for model evaluation.
Movement toward SST is desirable. Meta-analysis can facilitate
movement toward SST if ES or the information required for computing ES
is reported consistently. However, significance testing arguably is a
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weak model appraisal tool with limited applications. Increased use of
other indicators of model adeguacy can be expected in the future.
Movement away from purely statistical summaries toward common language
indicators of ES and predictive power would be constructive, but
changes in this area are likely to lag behind changes in statistical
practices.

Changes in these traditional practices are likely to come slowly
until alternative methods of evaluation are available. SEM appraisal
practices provide one set of alternatives. This approach emphasizes a
process that challenges a model by pointing out its limitations or by
suggesting alternative models. Arguments based on limitations
include:

¢ “The model is determined by influential data points and
outliers.”

e “The model capitalized on chance in stepwise modifications.”
¢ “The model includes predictors that serve no useful purpose.”

Arguments based on alternative models include:

e “Other models account for the data as well.”
e “Other models are more parsimonious.”

Any useful model must have statistically significant predictive
power. Using NHST as the basis for model evaluation, therefore,
represents the application of a minimum standard for model acceptance.
SST is more relevant to appraisal when models progress beyond this
minimum, but SST results apply to a specific model as it is currently
formulated. The critical appraisal and amendment procedures are those
that counter the challenges noted above. Methods that move beyond
significance testing are needed to respond to those challenges.

Systematic amendment and appraisal processes help to avoid common
weaknesses in the modeling process. Confirmation bias is a critical
problem given the current state of the art. Modeling efforts often
focus on a single model. The search for alternative models is
frequently limited to adding parameters to or deleting parameters from
a base model. The typical result 1s a final model that differs
trivially from the initial model. Indeed, the modifications
introduced may be no more than the effects of chance unless special
steps are taken to allow for the number of significance tests involved
in the modification process. The GFI or PRE for the model is likely
to be interpreted optimistically. The fact that subjectively
plausible ex post facto explanations can be offered for the structure
of the current model may be taken as evidence of its credibility. This
practice is questionable in light of Armstrong and Socelberg’s (1968)
demonstration that models preduced by random data can be given
plausible interpretations. These two model appraisal tendencies make
it likely that equivalent models will be neglected. Models implied by
alternative research paradigms are likely to be ignored completely
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(Katzko, 2002). Careful attention to these issues in model appraisal
and amendument can substantially strengthen current practices and
promote principled argument.

The amendment and appraisal process directs attention to the
interplay of different elements of MAGIC. These components of the
model construction process emphasize articulation and credibility.
Articulation is critical in defining alternative models and justifying
modifications to existing models. Showing that some explanations for
data are less plausible than others enhances the credibility of the
better models. The plausibility of a model is increased by adjusting
the weight given to magnitude estimates to allow for chance sampling
effects and the effects of outlier/ influential data points. The
adjusted magnitude estimates then can be weighed against other
criteria (e.g., parsimony). Improved model appraisal practices are
likely to reduce the initial interest value of a model. Sound
practice will highlight the existence of equivalent models, the
potential for capitalization on chance, and so forth. Initial
assessments must weigh these facts against any novel or intellectually
intriguing element (s) in the new model. Interest in the model will
grow if it meets the challenges of the appraisal process.

The current state of the art poses a challenge. The power of
statistical tools for fitting and refining models is increasing. This
power can be used to sharpen the process of principled argument.
Stronger arguments will be provided if applications of the tools are
appropriately sensitive to concerns such as outliers, influential data
points, the risk of capitalizing on chance when performing multiple
significance tests, and the distinction between statistical
significance and explanatory power. The models produced by applying
those tools should be sensitive to the need for caution in causal
inferences and to the likelihood that equivalent models may exist.

The challenge arises because rigorous incorporation of each of these
elements into model construction is not a matter of habit for most
researchers. In fact, careful implementation of these desiderata
requires substantial time and effort. Changing these practices can be
difficult even for highly motivated investigators. However, the
alternative is an increased risk of “garbage in, garbage out”
behavioral models. Even if the principled argument process ultimately
sorts the good from the bad, the sorting process will be far more
efficient if each study is as strong as possible.

Help is available for the overwhelmed investigator. Recent
recommendations for sound statistical practices (Wilkinson & the Task
Force on Statistical Inference, 1959) and modeling (Boomsma, 2000;
McDonald & Ho, 2002) point to the most important tools to support
improved modeling. These articles could be abstracted to provide
checklists that will help ensure proper attention to the appraisal
problems noted here are properly addressed. TImplementing those
recommendations consicstently will make the model construction process
more challenging to the theorist and to the data analyst. The effort
will be repaid by gains in model accuracy and credibility and
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increased persuasiveness in the argument process. These steps turn
the process into the principled argument needed to generate reliable
knowledge.

Searching for New Perspectives

Even the most conscientious application of the methods described
in the preceding section may not produce a satisfactory model of
behavior. The range of models that can be considered is limited by
the variables that are available for inclusion in the models. The
range may be limited by a commitment to a given theoretical framework.
In fact, research often employs paradigms that cannct be compared; the
result is behavioral science encompassing several explanations that
are treated as equivalent yet mutually exclusive accounts (Katzko,
2002). 1If each model has adherents, parallel explorations of
alternative models can generate a range of useful insights. However,
parallel research programs are more likely to divide the research
community than to yield a consensus. From the perspective of this
chapter, consensus is a necessary component of reliable knowledge
(Ziman, 1978). If consensus cannot be reached, two or more different
predictions could be made for the same event. In such a case,
additional work is needed to determine which prediction is correct.
This uncertainty can be resolved in four ways. First, one paradigm
can be adopted as correct and the others discarded. Second, the
paradigms can be shown to be different methods of operationalizing the
same construct(s). The paradigms now become auxiliary models that
demonstrate convergence of methods. Third, the paradigms can be
combined to provide a more complete model. In many instances, this
step will be necessary to replace models that merely provide
statistically significant prediction with a model that provides a high
level of predictive accuracy. Fourth, boundary conditions can be
defined that determine when each paradigm is relevant to behavior.
Given these alternatives, the isolated study of individual paradigms
obviocusly can be constructive. However, research will not vield
reliable knowledge as defined by Ziman (1978) until the paradigms are
considered jointly. Direct comparisons are fundamental to deciding
whether the explanations provided by difference models are competitive
or complementary. This statement is true no matter how elegant the
formal statements and tests of different models may be.

Modeling can reach an impasse despite the serious pursuit of the
comparison, contrast, and integration of different paradigms. The
integration may produce an overarching paradigm that includes the best
elements of all available alternatives. This super paradigm still may
not adequately account for behavior of interest. The principled
argument process can grind to a halt if there is no method of
introducing new perspectives. Qualitative research methods and
exploratory data analysis (EDA) are tools for identifying new
perspectives.

Qualitative research and EDA have a common core. Both approaches
search for patterns in data. This common element introduces a

52



Statistics and Model Construction

potential problem. Human beings are very good at perceiving patterns
(Gould, 2002). The perceived patterns are translated easily into
plausible stories of causal events. However, those stories may
exclude key facts to conform to an iconic form (Gould, 2002; Miles &
Huberman, 1994). Thus, human interpretive tendencies can work
against the search for a better understanding of behavior. The search
for patterns must include mechanisms to protect against this
possibility. The need for an open mind is one underlying theme of the
discussion of methods of searching for new perspectives that follows
below. The value of checks and balances in the search is another
theme. Properly combined, these elements make qualitative research
and EDA constructive tools for exploring blind spots that limit the
value of behavioral models.

Qualitative Research

Statistical models are mathematical abstractions that frequently
are interpreted as descriptions of causal processes. The formal
statements of these models appear to be definitive. A neat set of
equations with specific parameter values replaces the original data.
This form of presentation makes it easy to forget that the parameter
values are only sample estimates, that all of the equations include an
error component, and that latent variables are involved. The risk of
producing nonsense is substantial if statistical models are not
subjected to serious tests based on other methods.

General Approach

Qualitative research provides methods that can be used to
generate initial models or to subject existing models to additional
testing. Qualitative research covers a wide range of activities
(Denzin & Lincoln, 1994). The focus of these activities is the
identification of patterns in a set of observations. The observations
may be recorded in notes made by an observer, in written material
produced by the subjects being studied, or in other forms. Matrices
and graphs are among the tools commonly used to identify patterns
(Miles & Huberman, 1994).

Qualitative methods require a suitable database. Observations
must be made and entered into databases, usually as text. The text
must be annotated with observer judgments to identify critical points

and link them to specific sections of material. The coding process
may identify ambiguous code categories, important events that do not
fit within the coding scheme, or other anomalies. In such cases, the

investigator must amend the existing process and review the material
again. Once the coding process is complete, the investigator must
search through a large volume of material to identify specific
instances of hypothesized associations. The data must then be
aAbstracted to identify patterns that can be used to organize the
findings (Miles & Huberman, 1994). After the pattern has been
established, the data may be reviewed vet again to determine whether
anomalies represent coding errors. The investigator then may review
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the material still one more time to ensure that all events that fit
within the coding scheme have been identified. Finally, the search
might be followed by additional searches to test the internal logic of
the existing coding scheme, evaluate tentative inferences drawn from
that scheme, and identify competing explanations (Miles & Huberman,
1594). This general procedure has been facilitated in recent vyears by
the development of a number of computer programs to aid in the process
(cft., Dohan & Sanchez-Janowski, 1998; Miles & Huberman, 1994). As
vet, there is no single best program or "killer application" (Dohan &
Sanchez-Janowski, 1998). The basic methods of qualitative analysis
have made it difficult to increase sample sizes in the past.

Search Methods

The search for patterns in qualitative data matrices can involve
a variety of heuristics. Miles and Huberman (1994, pp. 245-277) draw
a distinction between strategies that generate meaning and strategies
that test or confirm findings. Tactics for generating meaning include
(1) noting patterns and themes, (2) seeing plausibility, (3)
clustering, (4) making metaphors, (5) counting exemplars, (6) making
contrasts and comparisons, (7) partitioning variables, (8) subsuming
particulars into general categories, (9) factoring, (10) noting
(qualitative) relations between variables, and (11) finding
intervening variables. The products of these tactics then are used to
build a logical chain of evidence and to make conceptual or
theoretical sense of the data.

Qualitative research is sensitive to the potential for biases
such as perceiving events as more patterned than they actually are
(Miles & Huberman, 1994, p. 263). Good qualitative research includes
checks to reduce the risk of bias. Tests include checks for (1) data
representativeness, (2) researcher effects, (3) methods effects, and
(4) data weighting effects. Tactics for detecting points where the
pattern breaks down include (5) searching for outliers, (6) examining
extreme cases within the pattern, (7) reviewing surprising events, and
(8) searching for data that are contrary to the pattern. Explanations
are tested by (9) making if-then tests, (10) ruling out spurious
relations, (11) replicating key findings, (12) checking rival
explanations, and (13) getting feedback from informants.

Formal Analysis

The preceding lists of exploratory and confirmatory tactics
provide a rough general picture of the qualitative research approach.
The underlying logic of translating observaticns into theoretical
statements 1s similar to that applied in guantitative analysis. This
similarity is even more pronounced when qualitative researchers
undertake formal gualitative analyses. Formal qualitative analysis
techniques do not yield predictive equations, but do impose specific
restrictions on the organization and interpretation of data (Griffin &
Ragin, 1994).
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Formal qualitative analysis techniques commonly focus on
cateyorical variables. Models are constructed to explain why cases
fall into particular categories for one of the variables. The
explanatory variables in a study define a large matrix in which each
cell represents a different combination of categories. When all the
cases in a cell come from a single category of the criterion variable,
the combination of attributes defining the cell comprise a set of
conditions that are sufficient to produce a case. The simplest
explanatory model results when two conditions are met. First, all of
the cases in each criterion category fall in a single explanatory
cell. Second, the explanatory cell is different for each criterion
category. When cases from a single criterion category are found in
more than one cell, more than one causal process may precede the same
end state. A method such as qualitative comparative analysis (QCA;
cf., Ragin, 1987) can be used to formally determine which explanatory
variables actually are needed to account for membership in each
criterion category.

Qualitative Causal Models

The models generated by qualitative research differ from
statistical models in two important respects. OQualitative research
models are based on formal logic. Causal models are formulated in
terms of necessary and sufficient conditions. All cases demonstrating
a specific profile of explanatory variables are expected to be members
of the same outcome category. If an observation with a particular
explanatory profile is not a member of the predicted outcome category,
the data are reviewed to identify errors in coding. If the coding is
correct, a search for additional predictors may be initiated. This
approach contrasts with statistical models such as discriminant
function or loglinear analyses. Those methods would estimate a set of
probabilities representing the likelihood that the case should be
classified as a member of each outcome category. The case then would
be assigned to the category with the highest probability. Thus,
qualitative analyses strive for a definite assignment of each case
while quantitative analyses assign cases to categories based on
probabilities. In some cases, statistical models can produce roughly
equal probabilities for membership in two or more categories. The
associated uncertainty is one difference between the two approaches.

The explanatory significance of predictor variables also differs
between qualitative and guantitative analysis models. Statistical
models focus primarily on additive effects of predictors. Most models
therefore consist of linear weighted sums of the predictors. For each
observation, the probability of category membership is increased or
decreased to some extent based on the predictor score. The
probability estimate is modified regardless of the values of other
predictors. In the gualitative approach, none of the predictors has
an isolated effect. The import of each predictor is contingent on the
values of other predictors because a case is assigned to a particular
category only when the overall profile of explanatory variables
Justifies that classification. The contingent nature of the
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relationship between explanatory variables and category membership
would imply an interaction in a statistical model. A qualitative model
involving several predictors, therefore, might be equivalent to a
statistical model involving higher order interactions. A qualitative
model with even a modest number of predictors therefore implies a
level of complexity of interplay among predictors seldom found in
Statistical models. From the qualitative perspective, the complexity
is justified by the assumption that causal processes that determine
category membership represent the interplay of a number of factors. A
theoretical account of the evidence must spell out the contingencies
in this interplay. Interpretations of statistical models are less
likely to assume that the set of predictors in the model define an
inteyrated causal process. Instead, those models are likely to
interpret category membership as the product of the independent
operation of a number of independent causal processes. Qualitative
analyses, therefore, may be especially useful in stimulating thought
about the interplay of causal variables.

Qualitative Research and MAGIC

Qualitative research emphasizes two elements of the MAGIC model
that are likely to receive less attention in quantitative studies.
The qualitative approach certainly emphasizes the articulation of
causal processes and their links to actual behavior and events. The
qualitative approach also links models to real entities and events.
This linkage is likely to make the results more interesting to
consumers of the model.

Statistical models often embody very sketchy causal assertions.
A sketchy description of a plausible rationale is given and an
appropriate arrow is inserted into a causal graph. One set of causal
arrows is preferred if it reproduces aggregated observations better
than another set. This avenue of study can be pursued without ever
subjecting the initial causal assertions to close scrutiny. For
example, it may never be determined whether the assertions are
plausible for a single case considered in isolation.

By contrast, qualitative analysis can subject causal assertions
to closer scrutiny. Abstract traits are replaced with specific events
that often can be located in temporal sequences. Serious
consideration may be given to alternative causal paths without the
necessity of choosing a single alternative. For example, if QCA
produces more than one cell of "cases," the result implies the
existence of alternative causal models. These models might be
represented in an SEM as different pathways once identified, but the
key problem of identifying alternative causal patterns would be more
difficult to solve in the usual quantitative analysis. Insensitivity
to the existence of alternative causal models is a weakness of current
practice in statistical modeling.

Qualitative research can increase the interest value of models.
Statistical models in the behavioral sciences are of interest
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primarily to narrow research communities. Economics models are an
obvious exception to this statement. In other areas, the linkage
between latent traits and specific types of behavior may be too vague
to interest potential consumers (e.g., policy-makers, clinicians,
managers, military leaders). Abstract variables are of interest to
these audiences only when they map onto the decision terrain faced by
the user. Examples from qualitative research could help to define
this relationship more clearly.

Exploratory Data Analysis (EDA)

EDA (Tukey, 1977) shares a core element with qualitative
research. Both approaches are concerned with exploiting the richness
of the data. This concern drives the view that models should reflect
observations made by the investigator after a period of intensive
interaction with the objects of study. Both approaches share a
concern that routine application of statistical computer algorithms
will obscure important aspects of the data. Thus, both EDA and
qualitative research emphasize cyclical evaluation of models. Each
cycle involves a seqgquence of identifying patterns in the data,
developing hypotheses to account for those patterns, followed by
testing and revising the hypotheses. The revised hypotheses then are
the basis for the next cycle. The cycle is repeated until an
acceptable representation of the data is obtained. EDA and
qualitative research differ in that the former typically applies the
observe-test-revise-test-repeat cycle to quantitative data rather than
nominal categorical data.

A typical EDA sequence might be as follows. A series of graphic
displays is examined to identify general patterns in the data. An
initial mathematical model is formulated as a first attempt to capture
the pattern. The data are analyzed to estimate parameter values for
the initial model and to compute differences between the predicted and
observed values. A second round of graphic displays examines the
residuals from the initial model to identify areas of misfit between
the model and the data. A revised model is formulated to account for
the residuals and is fitted to the data. The cycle is repeated until
a good representation of the data can be achieved.

The EDA approach is more a frame of mind than a unique analytic
method. Any of the steps described in the preceding paragraph could
be included in a standard statistical analysis. Behrens (1997)
summarizes the key elements of the EDA frame of mind as:

e Understand the context well enough to make informed
decisions given theory and prior research findings (p.
135).

e TUse graphic representations of the data to guide analysis

decisions by looking at the actual pattern of data (p.
135).
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e Develop models iteratively from tentative model
specification followed by residuals assessment (p. 139).

e TUse robust/resistant procedures to minimize the influence
of distributional assumptions (p. 143).

e Attend to outliers not merely as indications of problems in
the research process, but as potential indicators of
anomalous phenomena that reqguire explanation (p. 144).

e Re-express the original scales when doing so will
facilitate interpretation, promote symmetry, stabilize the
spread of values within groups in the analysis, or promote
straight line relationships (p. 145).

Behrens (1997) provides greater detail on the preceding points with
references to original sources that explore these various issues in
depth. A full treatment of these methods is not possible here, but
Behrens’s (1997) general guidelines are directly related to issues
discussed earlier in this chapter. Understanding context is related
to the idea that one should not suspend judgment when analyzing data.
When prior findings contribute to context, these admonitions share the
spirit of strong significance tests because prior findings replace the
null hypothesis as a research field matures. The admonition to
develop models iteratively is implicitly related to parsimony because
it is based on fitting a simple model to data. New parameters are
added only if they predict the residuals. Stepwise regression, EFA,
and other analyses begin with simple models then extend them if adding
more predictors or more factors will provide a better account of the
variance. These procedures provide iterative models, but the methods
are constrained by statistical criteria (i.e., maximize the variance
explained) rather than theoretical or empirical context and the
judgment of the researcher. The emphases on robust procedures and
outliers directs attention to the need to develop models that
accurately predict behavior in most of the people most of the time.
Both of these elements of EDA could be useful to identify exceptional
groups of observations. If there are no obvious errors in the data,
these groups might become the basis for hypotheses that could be
tested later using taxometric methods. Finally, the emphasis on
interpretation is a reminder that statistical summaries are not the
endpoint for analysis. The data must be interpreted in ways that link
them to actual behavior and to theory.

State of the Art

Several factors make it likely that there will be dramatic
improvements in behavioral models in the near future. First, the
development of computer hardware and software has reduced barriers to
inceorporating advanced procedures intc research. Today’s programs
routinely include simple methods of specifying models for analysis.
Examples are drop-down menus and graphic interfaces. Database
translation programs make it possible to format data in almost any
familiar form and import it into a new program. Thus, it 1s no longer
necessary to master a complex computer syntax that is specific to a
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particular computer program with a limited range of analytic
functions. For a modest cost, every researcher can have ready access
to each type of analysis discussed in this chapter. In fact,
researchers in large organizations are likely to have access to
several different programs that implement the most widely used
methods.

A reduced risk of “garbage in, garbage out” analysis is a second
positive factor. The increased integration of different analysis
procedures under the heading of GLM or EM maximum likelihood methods
makes it clear that different models are manifestations of general
principles. Long (1997) provides a fundamental expression of this
point through his observation that linking functions translate
different CLDV analyses into familiar linear regression models. Long
further notes that techniques learned in the more familiar linear
regression context apply to procedures such as logit, probit, and
logistic regression analyses. Analogous situations can be identified
in SEM and other procedures. Recognizing and capitalizing on these
similarities reduces the learning curve required for effective use of
new procedures.

There is movement toward confirmatory methods. Confirmatory
methods encourage explicit theoretical statements by making it
possible to impose constraints on a model. This aspect of analysis is
not new. For example, many researchers have conducted analyses that
forced the entry of predictors into a regression equation. However,
the range of analyses that can be conducted with constraints that
specify precise values for model parameters now extends to factor
analysis (i.e., CFA), cluster analysis (i.e., EM mixture analysis),
and substantive models (e.g., SEM). Meta-analysis provides tools for
developing parameter estimates based on the cumulative research
record. The process of thinking through the potential constraints
encourages better articulation of the relationship between the model
and theory. At the same time, a good fit between a highly constrained
model and the data provides the convergence between predictions and
evidence that indicates a strong theory.

The identification of important blind spots in traditional
research practices is another positive development. The most critical
blind spot is the tendency toward confirmation bias. The demonstrable
existence of equivalent models is the strongest argument for giving
careful attention to this problem. However, acknowledging
confirmation bias also directs attention to other important problems.
Parsimony, an accepted desideratum for sound theories, comes into view
when it is recognized that nearly equivalent models may exist that

involve fewer parameters. Recognition of confirmation bias can also
lead to more frequent comparisons of models based on different
research paradigms (Katzko, 2002). One intriguing issue here is that

syndrome models, which generate an overall model by simply collecting
and enumerating specific paradigms, may prove defensible on further
analysis. Conceivably, this approach is the modeling equivalent of
taxometric definitions of mental health syndromes. However, as Meehl
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(1992) has pointed out, the existence of a typology is a testable
hypothesis, not something to be established by fiat. Where multiple
models or paradigms are not currently available, tools for searching
for alternative models are available (e.g., qualitative analysis, EDA,
TETRAD) . Spirtes, Richardson, Meek, Scheines, and Glymour (1998)
argue that a serious search for alternative models should be
undertaken prior to conducting any analysis.

Recent publication guidelines for statistical practices should
encourage improved modeling practices. The availability of these
guidelines indicates that practice has matured to produce at least a
broad general consensus on methods. The consensus includes
recommendations on the general problems of statistical inference
(Wilkinson & the Task Force on Statistical Inference, 1999) and
recommendations for standard reporting in SEM (Boomsma, 2000; McDhonald
& Ho, 2002). The SEM guidelines may be particularly useful for
modeling. The general steps that are outlined can be adapted to
almost any analysis, particularly those involving the imposition of
constraints on model parameters and structure. Diagnostic tools are
available at various steps in the process to assess potential
weaknesses of existing models. These tools include methods of
identifying outlier/influential data points and searching for
alternative models. Systematic application of these tools will reduce
the likelihood that models will be affected by blind spots in the
conceptual model under investigation or quirky elements of the data
being analyzed. Applications that embody the test-and-revise spirit
of EDA are likely to be particularly fruitful.

The state of the art is itself an example of principled argument.
Progress has been made in some areas, but consensus has not been
reached on all aspects of modeling. Methods of appraising and
amending models are in a state of flux. Significance testing is
becoming less important in SEM, but it continues to be the primary
tool for model assessment in other areas (e.g., CLDV analyses). Even
in the SEM domain, consensus is only qualitative in some areas. For
example, no consensus has been reached regarding the best GFI to use.
Hu and Bentler's (1998, 1999) two-indicator approach probably
approximates the current consensus in this area with SRMR and RMSEA as
a workable combination. These indices reflect the misfit and PRE of
the model, respectively, and appear to be sensitive to mistakes in
both the measurement model and path model. Uncertainty in this area
illustrates an issue that is likely to be important in SEM in the near
future. The ongoing controversy over significance testing directs
attention to the potential use of multiple criteria in other areas.
Given multiple criceria, it is reasonable to expect future work to
address the problem of how best to combine alternative criteria. At
present, the issue of selecting and weighting indicators of model
adequacy is a judgment call for the researcher. At the same time,
there is clear evidence of movement away from relying on significance
testing as the primary method of model evaluation.
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It is not clear at this time whether the PRE approach should be
extended to all types of models. For example, should this criterion
be applied in the study of CLDV? The research tradition in areas of
study using these tools has emphasized significance testing rather
than incremental fit as the primary basis for choosing between models.
Procedures such as Kaplan's (1990a, 1990b) combination of modification
indices and expected parameter change provide an alternative
perspective on post hoc model modification. However, investigators
must be sensitive to the risk of producing a complex model that merely
capitalizes on chance (Green et al., 2001; Steiger, 1990). Responses
to Kaplan's (1990a) suggestions included the recommendation that
modifications should not be introduced without adequate theoretical
justification (Bollen, 1990). Kaplan (1990b) concurred with this
recommendation, but even this criterion may be inadequate. Steiger
(1990) posed the question, "What percentage of researchers would ever
find themselves unable to think up a theoretical justification for
freeing a parameter?" (p. 175, italics in the original). Note that
this question was posed in the context of post hoc modifications
rather than a priori specification. Even with such justification,
modifications should be examined in a new sample of data to verify
that they are productive. In connection with this point, Steiger
(1990, p. 176) also noted emphatically, "An ounce of replication is
worth a ton of inferential statistics” (italics in the original).
Increasing use of replication will likely be a trend in the future.
One reason is that increased use of bootstrapping and other resampling
methods provides methods of pursuing this end without radically
increasing the volume of data needed in the modeling process (Wilcox,
1998).

The development of a broader pberspective on research programs may
become a growth area in the future. Qualitative research and EDA have
been examined here as potential methods of avoiding confirmation bias.
Qualitative analysis can be an end in its own right, but this general
approach also has the potential to stimulate the formulation of new
models. QCA is interesting as a means of identifying causally
relevant variables that could be incorporated into models. QCA also
is a stimulus to rethinking a problem because it embodies a different
concept of causation than is found in SEM, for example. EDA and
TETRAD provide additional tools for using data to generate causal
models. The use of these toolsg is important as an antidote to the
confirmation bias that occurs when a moderately good fit to the data
is interpreted as sufficient justification to accept a model specified
at the outset. Perhaps a careful wedding of qualitative analysis to
qguantitative analyses would help overcome the resistance to )
qualitative research in some domains (e.g., psychology journals; Kidd,
2002). Explication of the limitations of standard statistical
procedures as model generating tools coupled with careful
demonstration of the checks and balances involved in proper causal
inference from qualitative data could be critical to making a better
case for combining the two approaches when constructing models. The
development cof methods of determining whether a qualitative model is
superior to a quantitative model in some situations may be an
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important topic for future work. For example, a qualitative model
might identify a change of circumstances in an operational setting
that signals the need to switch causal models. A model appropriate to
the new circumstances would replace the quantitative causal model
currently in use. The rapid growth of techniques for data mining from
documents and other sources could facilitate the application of
gqualitative analysis to this type of problem in the near future.

This description of the state of the art is certainly incomplete.
Attention has been limited largely to tools routinely used in
psychology and sociology. Developments in other domains may provide
tools that can be very useful. For example, time-series analysis was
developed primarily in the realm of econometrics. The absence of any
consideration of how to translate statistical models into dynamic
simulations for forecasting is another potential problem. At a
minimum, this translation will have to include distributions of
parameter values in addition to functional relationships between
variables. Distributions must be considered to generate samples of
entities (i.e., individuals, groups) that will perform the actions
that lead to the forecast. Techniques such as HLM are useful in this
regard because they provide estimates of variances. However, the
actual process of translating those estimates into simulations may be
more difficult than it first appears.

Finally, the potential for different categories of models has
been referred to previously only in passing. Models such as game
theory may not translate readily into quantitative terms. The problem
of how to construct hybrid models that integrate quantitative and
qualitative differences in dynamic representations may be a major
challenge for the future.

Computer Programs and Specific Implementations

This chapter has not discussed specific software programs for
implementing state-of-the-art analyses. However, almost every
procedure referred to in this chapter can be implemented using several
statistical packages. The programs often reduce the problem of
specifying a model to simple activities such as drawing a picture or
filling in boxes on a pop-up computer menu. The basic problem of how
to implement these advanced methods therefore reduces to choosing an
appropriate program and specifying the model of interest. The full
range of analysis problems that can be addressed by these means cannot
be described because computer programs are being revised and updated
so rapidly. Even relatively inexperienced investigators can apply
advanced methods effectively when guided by recent recommendations
regarding statistical practices (e.g., Behrens, 1997; Boomsma, 2000;
McDonald & Ho, 2002; Wilkinson & the Task Force on Statistical
Inference, 1999).

An informal survey of advanced data analysis packages suggests

five trends in the development of computer analysis tools. First,
newer programs emphasize model testing and comparison. Program input
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includes equations that define a model to be fitted to the data. The
program then estimates parameter values. Program output typlcally
includes an overall measure of fit between the model and the data
(e.g., a maximum likelihood x*). Second, newer programs capitalize on
the fact that many nonlinear models can be transformed to linear
models (cf., Long, 1997). Thus, a single program fits models that
appropriate expressions for continuous and discrete variables. Third,
programs increasingly accommodate different combinations of continuous
and discrete variables. Either type of variable may appear as a
predictor or a dependent variable in equation form. Even latent
variables can be continuous or discrete (Magidson & Vermunt, 2001,
2002). Fourth, programs are more likely to provide simple methods of
cross-validating models. Some programs provide options that
automatically divide the data into calibration and cross-validation
samples. Fifth, the range of graphic display methods is increasing.
This trend makes it easier to apply EDA principles during data
analysis.

These trends provide better tools for solving the difficult
problem of moving from verbal statements to mathematical models
evaluated by tests of fit to the data rather than by null hypothesis
tests. Wider use of these tools will surely help to define
consensible facts (Ziman, 1978) by clearly articulating the links
between data measurements and constructs and imposing theoretically
derived values on the data. Stronger consensus should alsoc be
fostered by the direct comparison of alternative models conducted in
the context of metathecoretical criteria for model choice (e.g.,
parsimony) .

Specific programs suitable for addressing a particular problem
can be identified several ways. A review of the related research
literature can identify programs used in prior work. Specialized
journals (e.g., Structural Equation Modeling) often provide examples
of different programs. Methodological and statistical journals review
books and computer programs that describe specific programs and often
contrast a given product with competitors (e.g., Journal of the
American Statistical Association, British Journal of Mathematical
Psychology, and Educational and Psychological Measurement). Internet
searches can identify programs for general types of analysis. For
example, at the time of this writing, a search for “latent class
analysis” identified a site listing 15 computer programs that would
perform this procedure. Similarly, a search for “cluster analysis”
identified several programs that implement the multivariate mixture
approach described by Fraley and Raftery (2002).

Guidance on specific analysis problems is available in many
cases. Program documentation now routinely supplements written
manuals with computerized tutorials and application examples.
Textbooks that describe the underlying statistical models, the
development of the analysis methods, and application examples are
available and, in some cases, specifically linked to particular
programs (e.g., McCutcheon, 1987; Raudenbush & Bryk, 2002; waller &
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Meehl, 1998). Texts on general topics such as SEM are widely
available, but care 1is needed when choosing a text to ensure that it
covers critical issues (Steiger, 2001). Journal articles often
include appendices giving the command syntax for specific methods or
models. Such appendices are common, for instance, in Structural
Egquation Modeling and Psychological Methods articles. Internet sites
for user groups include bulletin boards for seeking expert advice on
specific problems (e.g., SEMNET). These resources are helping to
break down barriers to the use of modern analysis procedures, thereby
providing tools for more focused tests of hypotheses.

The range of analytical options is daunting and may even be
intimidating. Most people will experience a natural tendency to cling
to familiar methods that provide reasonably sound answers to their
questions and permit work to move forward in an orderly fashion. This
reaction should be tempered by the fact that the temptation is shared
with most other colleagues. At present, the average researcher is not
fully prepared to exploit all analytical opportunities (Tinsley &
Brown, 2000b), but this situation is neither new nor an insurmountable
impediment to progress. As Berk (1997, p. xxi) notes in his
introduction to Long's (1997) description of CLDV, "For most of the
procedures discussed..there exist statistical routines in all of the
major statistical packages. This is both a blessing and a curse. The
blessing is that minimal computer skills are required. The curse is
that minimal computer skills are required. Right answers and wrong
answers are easy to obtain." However, if researchers remember that
"No statistical procedure should be treated as a mechanical truth
generator" (Meehl, 1992, p. 152, italics in the original), progress
toward Ziman's (1978) goal of consensus should be more rapid in the
future than it has been in the past. In the end, investigators who
invest the time to familiarize themselves with newer technigues will
be repaid by substantial gains in their ability to derive more
definite answers to their research gquestions.
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